
ISSN: 2229-6948(ONLINE)    ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND 

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2  

339 

DROP TAIL AND RED QUEUE MANAGEMENT WITH SMALL BUFFERS: 

STABILITY AND HOPF BIFURCATION 

Ganesh Patil
1
, Sally McClean

2
 and Gaurav Raina

3 

1
Department of Computer Science and Engineering, Indian Institute of Technology Madras, India 

E-mail: ganeshp@cse.iitm.ac.in 
2
School of Computing and Information Engineering, University of Ulster, Ireland 

E-mail: sally@infc.ulst.ac.uk 
3
Department of Electrical Engineering, Indian Institute of Technology Madras, India 

E-mail: gaurav@ee.iitm.ac.in 

Abstract 

There are many factors that are important in the design of queue 

management schemes for routers in the Internet: for example, 

queuing delay, link utilization, packet loss, energy consumption and 

the impact of router buffer size. 

By considering a fluid model for the congestion avoidance phase of 

Additive Increase Multiplicative Decrease (AIMD) TCP, in a small 

buffer regime, we argue that stability should also be a desirable 

feature for network performance. The queue management schemes 

we study are Drop Tail and Random Early Detection (RED). For 

Drop Tail, the analytical arguments are based on local stability and 

bifurcation theory. As the buffer size acts as a bifurcation parameter, 

variations in it can readily lead to the emergence of limit cycles. We 

then present NS2 simulations to study the effect of changing buffer 

size on queue dynamics, utilization, window size and packet loss for 

three different flow scenarios. The simulations corroborate the 

analysis which highlights that performance is coupled with the notion 

of stability. 

Our work suggests that, in a small buffer regime, a simple Drop Tail 

queue management serves to enhance stability and appears preferable 

to the much studied RED scheme. 
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1. INTRODUCTION

Enhancing network performance and reducing energy 

consumption by the network are two very important design 

challenges faced by network operators today. Network 

performance depends on the design of transport protocols in the 

end-systems and the choice of queue management schemes in 

routers. Queue management schemes serve to give feedback to 

end-systems, by either dropping packets or marking packets with 

Explicit Congestion Notification (ECN) marks [10]. In the 

network, routers play an important role in energy consumption, 

and in routers the size of the buffers used has a direct impact on 

it; see [1] for an extended discussion on this relationship. 

The capacities of Internet routers are limited by the buffers 

they must use to hold packets. The challenge is that buffers need 

to be both large and fast. Buffers are currently sized using a rule 

of thumb which says that each link needs a buffer of size B = T * 

C, where T is the average round-trip time of the flows passing 

across the link, and C is the data rate of the link [12]. For 

example, a 10Gb/s router linecard needs approximately 250ms * 

10Gb/s = 2.5Gbits of buffers, enough to hold roughly 200k 

packets. Buffers also need to be fast: a typical 10Gb/s router 

linecard needs to access the buffer once every 30 ns, and this 

access time must decrease in proportion to the link speed, so that 

a 40 Gb/s linecard needs to access the buffer every 7.5 ns. It is 

safe to say that the speed and size of buffers is the single biggest 

limitation to growth in router capacity today. If buffers were 

small enough to be held in on-chip SRAM (e.g. 32Mbits of 

buffers), they would remove the memory bottleneck for 

electronic routers. 

The study of queue management has a long history among 

networking researchers. As yet, however, there is still no 

consensus on the optimal set of queue management algorithms. 

The lack of consensus serves to exhibit the rather difficult nature 

of the problem. Given the potentially promising prospect of 

having small buffered routers in next generation networks, we 

focus our attention on the impact of some commonly proposed 

queue management schemes in a small buffer regime. The 

schemes we study are Drop Tail and Random Early Detection 

(RED) [3]. 

Given the linkage between buffer size and both performance 

and energy, we are motivated to study queue management 

schemes in a small buffer regime. For our analysis, we consider 

a fluid model for the congestion avoidance phase of AIMD TCP 

with small Drop Tail buffers. The model is for long lived TCP 

flows. We first study this nonlinear model via a local stability 

and a local bifurcation analysis. We perform NS2 simulations 

with small Drop Tail buffers to corroborate our analysis. We 

also consider a mixture of TCP and UDP flows, and also a 

mixture of TCP with short lived flows. We observed that RED 

was quite sensitive to the precise choice of buffer size; thus, 

given the simplicity of Drop Tail it appears to be advisable to 

opt for Drop Tail for both performance and energy 

considerations.  

The rest of the paper is organized as follows. In Section 2, 

we outline some queue management schemes, analyze a fluid 

model for AIMD TCP, and perform some NS2 simulations to 

corroborate our analysis. In Section 3, we conclude and outline 

avenues for further research. 

2. QUEUE MANAGEMENT

Queue management schemes can broadly be divided into two 

groups: schemes that use the instantaneous queue size, like Drop 

Tail, and schemes that advocate an element of averaging of the 

queue size, like RED, before dropping or marking decisions are 

made. We focus on Drop Tail and RED. 

Drop Tail 

Drop Tail is perhaps the simplest queue management policy; 

it drops all incoming packets after the buffer is full. 
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Random Early Detection (RED) 

The goals of the RED algorithm [3], as per RFC 2309 [2], 

are to reduce queuing delay and packet loss, to maintain high 

link utilization, to better accommodate bursty sources, and to 

provide a low-delay environment for interactive services by 

maintaining a small queue size. In this paper we use drops, 

instead of ECN marks, as the feedback signal to the end-

systems. After the arrival of each packet, the RED algorithm 

calculates the average queue size avg as follows: 

  qwavgwavg qq **1  , 

where wq is the queue weight, q is the instantaneous queue size, 

and avg  is the previous average queue size. If the avg is less 

than minth then packets are enqueued. If the avg is more than 

maxth then all the incoming packets are dropped. If the avg is in 

between minth and maxth, then packets are dropped with a 

probability pa. The drop functions for Drop Tail and RED are 

shown in Fig.1.  

 

Fig.1. Drop functions of Drop Tail and RED 

Many variants of the RED algorithm have been proposed; 

they either modify the calculation of the drop function or 

propose different parameter settings. 

Fluid Model for TCP 

Consider a single TCP flow, whose window size at time t is 

W(t). When there are no loss indications, W increases by one 

packet every RTT; when there is a loss indication, W is cut in 

half. The rate at which packets are emitted at time t is roughly 

W(t)/RTT, so the rate at which acknowledgements or loss 

indications are received at time t is W(t − RTT)/RTT. Let p(t) be 

the packet loss probability for packets emitted at time t. 

Suppose there are N flows, and let W
N
(t) be the sum of all the 

window sizes. In the interval (t, t+), W
N
(t) changes in two 

ways. First, there is a decrement due to window halving: the 

total number of flows which receive loss indications is roughly, 
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and (assuming each flow is equally likely to receive a loss 

indication) the average reduction in window size for each of 

these flows is W
N
(t)/2N. Second, there is an increment of 

(N/RTT − O()), since each flow increases its window size by 

/RTT, except for those which receive loss indications. The net 

change in window size is 
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This suggests that the average window size w(t) = W
N
(t)/N 

should not depend on N, and should obey a differential equation 

   
    RTTtpRTTtx

tw

RTTdt

tdw


2

1
. 

An approximation used is that packets are being emitted at 

rate W(t)/RTT at time t, which means we are modeling a rate-

based mechanism parameterized by W(t) rather than a window-

based mechanism. 

Fluid Model for the Queue 

Let the total arrival rate to the queue at time t be X
N
(t) = 

W
N
(t)/RTT, and let x(t) = X

N
(t)/RTT. In the interval (t, t + ), the 

total arrival rate changes by Nx(t) and a total of Nx(t) packets 

arrive. Suppose the queue has service rate NC and buffer size B
N
. 

Lindleys’ recursion gives us an idea of how the queue size Q
N
(t) 

will evolve: 

      
NB

x
NN NCtNtQtQ

0
   

where     bqmaxminq
b

,0,0  . Depending on how B
N
 is chosen, 

this can lead to different queuing models. For example, if 

BNBN  , then it is entirely possible for the queue to go from 

empty to full in a short interval (t, t + ), if N is large enough; if 

B
N
 = NB this is not possible. Consider the case of small buffers, 

i.e. B
N
 = N


B where  = 0. Note first that the maximum possible 

queuing delay is B/NC which is negligible for large N. 

Consider an open-loop queuing system with N flows, in 

which each flow has mean rate x. As N  , the aggregate 

arrival process will converge to a Poisson process, assuming that 

the packet inter arrival time is bounded away from zero, in the 

following sense: if A
N
(t,u) is the total number of packets arriving 

in the interval (t, u), then the random process 

 NuttAA NN /,
~

  converges to a Poisson process with rate x. 

This result carries through to queue size:  if Q
N
(t) is the queue 

size at time t, then the distribution of Q
N
(t) converges to that of a 

queue fed by a Poisson process with arrival rate x and served at 

constant rate C, in a infinite-buffer system, assuming x < C. We 

expect that this result can be extended to a system with a finite 

buffer B, and thence to x  C. The loss probability for a finite-

buffer openloop queue is thus p = LB(x/C), where LB(·) can be 

calculated by finding the equilibrium distribution of a suitable 

Markov Chain. Now Q
N
(t) makes excursions of size O(1) in 

timescale O(1/N). For intuition, consider an 1// NCN MM
x  

queue, which is just an Mx/MC/1 queue speeded up by a factor of 

N. Therefore the Mx/MC/1 queue hits any given size B in 

timescale O(1/N). 

Since the timescale of queuing phenomena is O(1), one can 

claim that in the closed-loop system if the mean arrival rate x(t) 

doesn’t change by much in a short interval, then the loss 

probability is p = LB((t)),  (t) = x(t)/C. This is because, over a 

short enough interval, the queue can’t tell if it is being fed by 

open-loop or by closed-loop traffic; it sees an input process 
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which is a near-constant-rate Poisson flow. For a more detailed 

exposition, on the queuing theoretic arguments, see [4], [9]. 

2.1 AIMD TCP WITH DROP – TAIL 

The fluid model for the congestion avoidance phase of 

AIMD TCP is, 

   
    RTTtpRTTtx

tw

RTTdt

tdw


2

1
.             (1) 

Now, let x(t) be the total rate at which packets arrive at the 

queue, and let C be the service rate. Let LB(x) be the packet loss 

probability for a queue with buffer size B, service rate C and 

Poisson arrivals of rate x. It was argued in [8], [9] that Poisson 

arrivals are a good approximation when buffers are small. Thus 

p(t) = LB(x(t)). 

It was also argued in [8], [9] that, for large number of flows, 

the blocking probability of an M/M/1 queue is a reasonable 

model for the packet loss incurred by a small buffer Drop Tail 

router. Thus, for the model, the routers will be assumed to have 

the following packet loss model: 

p(t) = (x/C)
B
                                    (2) 

where C is the service rate and B is the buffer size. The packet 

drop probability is a function of rate x, and the average window 

size at time t is w(t) = x(t)RTT. Thus Eq.(1), outlined above, 

becomes 

        
2

1
2

RTTtxpRTTtxtx

RTTdt

tdx 
               (3) 

with equilibrium, 
pRTT

x
21

 . 

Local Stability and Local Hopf Bifurcation Analysis 

Let x
*
 be the equilibrium point of the system (3), let x(t) = 

x
*
+u(t), and linearize about x

*
, we get the equation, 

 
   RTTtbutau

dt

tdu
                          (4) 

where       *'*****

2

1
,

2

1
xpxxpxb   xpxa  . 

We now recall some results about Eq.(4) [7], where a  0, b 

> 0, b > a, and RTT > 0. A sufficient condition for stability is 

2


bRTT                                     (5) 

and the system undergoes a Hopf bifurcation at 

 bacosabRTT /122  
                       (6) 

with period 2RTT/cos
-1

(-a/b). 

Now in terms of network parameters, we may state the 

following about Eq.(3). A sufficient condition for local stability, 

using the drop function (2), is 

  2/1
1

*
 B

w
.                               (7) 

The two parameters which feature in the condition are the 

equilibrium window and the buffer size. The condition will be 

harder to satisfy as buffers get larger. Further, the system (3) 

will undergo a Hopf bifurcation at  

  











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B
cosBB

w 1

1
2

1 1

*
                       (8) 

with period 
  





















B
cosRTT

1

1
/2 1

.
 Observe that the Hopf 

condition also has the equilibrium window size, and the buffer 

size, and the period depends on the round-trip time and the 

buffer size. 

A Brief on the Hopf Bifurcation 

As conditions obtained by local stability analysis get 

violated, bifurcations may occur. A very common behavior of 

nonlinear systems (apart from convergence to a stable 

equilibrium) is the emergence of limit cycles which, like 

equilibria, may also be stable or unstable. The Hopf bifurcation 

is a way to analyze the emergence and stability of limit cycles 

bifurcating from a stable equilibrium. As a brief introduction to 

Hopf bifurcation theory [5], let us assume that we have a system 

of differential equations dx/dt = f(x) on ℝ n
, with a locally 

unique equilibrium x
*
 that is stable for  < c and unstable for  

> c. Further assume that Df(x
*
) and the characteristic exponents 

at x
*
 are continuous in  and the stability changes when one pair 

of complex conjugate characteristic exponents crosses the 

imaginary axis. Now let ,  be the corresponding eigenvectors 

of Df(x
*
), then at c the linearized system has periodic solutions 

lying in the plane of Re() and Im(). A geometric approach 

(based on the central manifold theorem) shows that for  near 

c, there is a 2-manifold invariant under the flow tangent to 

Re() and Im(). This is where a lot of the interesting dynamics 

take place. It is indeed possible to analyze the motion on this 

central manifold, and one way to do it is by parameterizing the 

central manifold by a single complex variable and then 

essentially using the method of averaging [5], [7]. 

We still need to determine the type of the Hopf bifurcation in 

Eq.(3), i.e. if it is super-critical or sub-critical: which is beyond 

the scope of this article due to space limitations. In the next 

section, we conduct simulations, with Drop Tail and the RED 

algorithm with variations in the buffer size, which serve to 

exhibit the onset of limit cycle dynamics. 

2.2 SIMULATIONS AND DISCUSSION 

We now simulate, using NS2 [13], Drop Tail and RED in a 

small buffered environment. The network set-up is a single 

bottleneck dumbbell topology, and the bottleneck capacity used 

is 100Mbps. The simulations are conducted over smaller round-

trip times (10ms) as well as larger round-trip times (200ms). 

We consider three types of traffic. The first set of traffic has 

only long lived TCP flows. The second type of traffic has long 

lived flows mixed with UDP flows. And finally, we also 

consider the mix of long lived and HTTP flows. The packet size 

is set to 1500 bytes. We monitor the following quantities: the 

queue size (in packets), the link utilization (in percentage), the 

evolutions of the window size for 10 randomly chosen TCP 

flows (in packets), and loss (in packets per second).
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Fig.2. Drop Tail with TCP flows. Bottleneck capacity = 100Mbps, Number of flows = 60, each with a 2Mbps link 

 

Fig.3. Drop Tail with TCP and UDP flows. Bottleneck capacity = 100Mbps, Number of TCP flows = 50, each with a 2Mbps link, 

Number of UDP flows = 20 each with a 1Mbps link 

 

Fig.4. Drop Tail with TCP and HTTP flows. Bottleneck capacity = 100Mbps, Number of TCP flows = 50, each with a 2Mbps link, 

Number of HTTP flows = 180 contributing 10Mbps 
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Fig.5. RED with TCP flows. Bottleneck capacity = 100Mbps, maxp = 0.02, wq = 0.001, Number of flows = 60, each with a 2Mbps link 

Drop Tail: For Drop Tail, we show the plots with buffer 

sizes of 15 and 100 packets with average RTTs of 10ms and 

200ms. Fig.2(a) and Fig.2(b) show the plots of Drop Tail with 

TCP flows. Fig.3(a) and Fig.3(b) show the plots of Drop Tail 

with TCP and UDP flows. Fig.4(a) and Fig.4(b) show the plots 

of Drop Tail with TCP and HTTP flows. 

At the buffer size of 15 packets, the queue is stochastic and 

stable. As we vary the buffer size from 15 to 100 packets, as per 

the local stability and bifurcation theory, we observe the 

emergence of deterministic oscillations in the form of (stable) 

limit cycles. This phenomenon confirms that stability should 

indeed be a metric for network performance. This qualitative 

change in the system dynamics leads the TCP flows to get 

synchronized. Thus it would be prudent to choose buffer size 

and AQM schemes to ensure that the system is stable. 

Indeed, as can be seen from Fig.2(a) and Fig.2(b) the 

formation of oscillatory dynamics is visible in the traces of the 

queue size. With slightly larger buffers, i.e. 100 packets, and 

with larger round-trip times (see 200ms of Fig.2(b)), the 

oscillations in the queue size are more prominently visible. From 

the window sizes as in Fig.2(b), the TCP flows clearly seem to 

get synchronised. The same phenomena can be seen when we 

have TCP and UDP flows together; see Fig.3(a) and Fig.3(b), 

and also when we have TCP and HTTP flows together; see 

Fig.4(a) and Fig.4(b). However, utilization drops in the case of 

TCP mixed with HTTP and UDP flows. 

RED: For the simulations with the RED algorithm (which 

was configured for dropping packets), we used the same network 

parameters as outlined above. The maximum dropping probability 

maxp was set to 0.02, which is the value used in [3]. The weight 

parameter wq was set to 0.001, which is close to the value used 

in [3]. Here also, we focus on two buffer sizes: 15 and 100. For a 

buffer of 15 packets, we used minth as 5, maxth as 15, and for a 

buffer of 100 packets, we took minth as 30, maxth as 100. 

As we move from a buffer of 15 to 100 packets, we again 

observe distinct determinate oscillations in the queue size; see 

Fig.5(a) and Fig.5(b). In this respect the results are qualitatively 

similar to those obtained from Drop Tail. The results were 

qualitatively similar to the results obtained for Drop Tail for 

other types of traffic also and therefore we do not show plots for 

these. 

3. OUTLOOK 

The study of queue management schemes continues to be an 

area of active research. The question of sizing buffers, and in 

particular the prospect of networks with small buffers, now 

provides us with a new platform under which queue 

management schemes could be evaluated.  

We studied a fluid model of AIMD TCP coupled with a fluid 

model of Drop Tail in a small buffer regime. The nonlinear 

model was amenable to analysis using control and bifurcation 

theory. We provided sufficient conditions for local stability, and 

also conditions to ensure the existence of a local Hopf 

bifurcation. In essence, the larger the buffer size the greater the 

possibility of violating the Hopf bifurcation condition. NS2 

simulations served to verify the analysis, and exhibited the onset 

of stable limit cycles. 

We also experimented with the commonly proposed RED 

algorithm with the same choice of network parameters. Again 

we noticed the emergence of stable limit cycles induced by 

changes in buffer size. Given that buffer size has an impact on 

performance and energy consumption, our current work suggests 

that the simple Drop Tail policy would be favorable over the 

more involved RED algorithm. 

Avenues for Further Research 

First, we need to develop models for the interaction of TCP 

and HTTP flows, and also for a mixture of TCP and UDP flows. 

We also need to analyse and simulate networks which have 

multiple and diverse round trip times, and also networks with 

multiple bottlenecks. It would also be useful to understand better 

the impact of any additional averaging that may be performed at 

the queues, as is currently advocated by queue management 

schemes like RED. A potential starting point for the 

development of light weight schemes could be the proposals 

outlined in [6]. 

(a) Buffer size = 15 packets, minth = 5, maxth = 15 (b) Buffer size = 100 packets, minth = 30, maxth = 100 
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Currently there is a lot of interest in revising the protocols 

and the architectural principles for the current Internet. An 

outline of a range of architectural issues and proposals is given 

in [11]. The relationship between network performance, energy 

consumption and buffer size is becoming apparent. It would be 

worthwhile to see if any other future architectural issues, as 

outlined in [11], are also impacted by the buffer sizing question. 
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