
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

329

DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN

RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED NETWORKS

S. Y. Yerima
1
, G.P. Parr

2
, S. McCLean

3
, P. J. Morrow

4
 and K. Sivalingam

5

India – UK Advanced Technology Centre (IU–ATC) of Excellence in Next Generation Networks Systems and Services
1,2,3,4

School of Computing and Information Engineering, University of Ulster, Northern Ireland

E-mail:
1
s.yerima@ulster.ac.uk,

2
gp.parr@ulster.ac.uk,

3
si.mcclean@ulster.ac.uk,

4
pj.morrow@ulster.ac.uk

5
Indian Institute of Technology Madras, India

E-mail: krishna.sivalingam@gmail.com

Abstract

This paper presents the design and implementation of a

measurement-based QoS and resource management framework,

CNQF (Converged Networks’ QoS Management Framework). CNQF

is designed to provide unified, scalable QoS control and resource

management through the use of a policy-based network management

paradigm. It achieves this via distributed functional entities that are

deployed to co-ordinate the resources of the transport network

through centralized policy-driven decisions supported by

measurement-based control architecture. We present the CNQF

architecture, implementation of the prototype and validation of

various inbuilt QoS control mechanisms using real traffic flows on a

Linux-based experimental test bed.

Keywords:

Policy-Based Network Management, Resource Management, QoS

Control Framework

1. INTRODUCTION

Efficient control and management infrastructure are needed

to provide coordinated, scalable and transparent resource

management and QoS control as fixed and wireless networks

converge towards IP-based transport in next generation

networks. In order to meet this requirement however, the

complexity of configuration, control and management operations

needed to support transparent service provisioning must be

overcome. Policy-based network management (PBNM) is one

promising approach that provides this capability by easing the

management of complex networks through automated and

distributed structures using centralized policies. To this end, we

have developed a QoS management framework, CNQF

(Converged Networks QoS Management Framework) based on

the PBNM paradigm.

CNQF is aimed at providing homogenous, unified and

adaptive measurement-based QoS control and resource

management over heterogeneous access technologies. By

leveraging PBNM paradigm, the CNQF architecture provides

the means for application transparency across existing and

emerging access technologies, thus permitting applications to be

transport-layer agnostic when deployed.

As part of the ongoing IU-ATC (India-UK Advanced

Technology Centre of excellence) project, an experimental

CNQF framework prototype is being built to provide a platform

for development and evaluation of advanced algorithms and

mechanisms for policy-based QoS management in converged

next generation networks. The CNQF prototype is being

developed in Java within a configurable testbed designed to

provide representative converged networks scenarios for tests

and evaluations. This paper presents the implementation of

CNQF subsystems and entities as well as initial experiments

conducted to test and validate various underlying mechanisms

enabling QoS control and management within the CNQF

architecture.

The rest of the paper is organized as follows. The next

section provides the background and motivation for our work.

Section 3 explains the CNQF architecture design and the

constituent subsystems. Section 4 deals with the implementation

of the CNQF prototype as well as the evaluation test bed

configuration. Section 5 presents the tests conducted on the

testbed to validate the operation of the current CNQF

implementation.

2. BACKGROUND AND MOTIVATION

One of the key advantages of Policy-based network

management (PBNM) is that it can simplify the administration

of complex operational characteristics of a network, including

QoS, access control, network security, and IP address allocation

[1]. The PBNM architectures published by the various

standardization bodies can be found in [2], [3], and [4], for

example. Telecoms and Internet Converged Services and

Protocols for Advanced Networks (TISPAN) technical

committee of the European Telecommunications Standards

Institute (ETSI) has defined a Resource and Admission Control

Subsystem (RACS) consisting of a Service-based Policy

Decision Function (SPDF) and Access Resource Admission

Control Function (A-RACF) [3]. Both of these interact with

Policy Enforcement Points (PEPs) in the underlying networks.

In that regard, the architecture shares similarity with the IETF

policy model which specified a policy enforcement point (PEP)

and a Policy Decision Point (PDP) as part of its architecture [4].

Similarly, Third Generation Partnership Project (3GPP) defined

a Policy Decision Function (PDF) in their Release 5/6 policy

framework [2].

While the standards bodies have defined architectures,

protocols and interfaces that are crucial to interoperability of

disparate vendor equipments that conform to the same standards,

details of implementation are left out and are usually vendor-

specific. Hence, with new wired and wireless technologies

emerging coupled with the need to address their convergence

and management requirements, PBNM based framework and

architectures are still being actively researched.

Kim et. al., for example, present an IP QoS management

framework in [5] designed to provide QoS control in ad hoc

military environments. The framework is based on SNMP and

DOI: 10.21917/ijct.2011.0046

S Y. YERIMA et al.: DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED

NETWORKS

330

DiffServ. Similarly, a policy-based multi-layer QoS architecture

for network resource control based on policy-based routing and

Traffic Engineering (TE) is presented in [6]. In [7] Oziany et. al.

present an XML-driven QoS management framework for IMS

based networks. Other works such as [1], [8]-[14] can be found

employing PBNM in different contexts including VPNs, Multi-

hop ad hoc networks, MPLS-enabled networks and virtualization

environments.

An important distinguishing feature of the CNQF design

presented in this paper from the aforementioned is the

incorporation of context management functionality as an

important building block of its architecture thus enabling added

intelligence to provide adaptive policy-driven decisions within

the framework. Furthermore, our work also contributes in

bridging the gap between the PBNM architectural definitions

within the standards on the one hand, and the implementation

and experimentation on the other hand which serves to provide

useful insight gained through evaluation studies. Hence, this

paper not only presents the CNQF architectural design

framework but also implementation of key subsystems and

experimental studies to validate their operation.

3. THE CNQF ARCHITECTURE

The CNQF architecture is presented in this section. It is

designed with three logical subsystems including: Measurement

and Monitoring Subsystem (MMS), RMS (Resource

Management Subsystem) and the Context Management and

Adaptation Subsystem (CAS). While functional elements within

the subsystems are designed to be integrated horizontally, they

also form part of a hierarchical structure as is typical of PBNM

systems [7]. The hierarchical structure is depicted in Fig.1.

The top level consists of tools that provide centralized

administrative capabilities such as Graphical User Interfaces

(GUI) for high level configuration, and policy entry/editing;

visualization tools for network-wide configuration and status

monitoring; and central high-level repositories. The PDL

(Policy Decision Layer) comprises of various Policy Decision

Points (PDPs) such as the Resource Brokers that form part of the

RMS; these are centrally managed via the PAL (Policy

Administrative Layer). The bottom layer is the MCAL

(Measurement, Control and Adaptation) layer that consists of

elements that directly interface with the Policy Enforcement

Points (PEPs) in the transport network. These elements include

the various Resource Controllers that are part of the RMS and

also the Network Monitors that are part of the Measurement and

Monitoring Subsystem.

3.1 RESOURCE MANAGEMENT SUBSYSTEM

(RMS)

The RMS within CNQF framework is primarily designed to

provide co-ordination, control, and allocation of resources along

the end-to-end transport path of the CNQF QoS domain. The

subsystem is structured such that the underlying

allocation/control mechanisms could be based on simple static

policies to complex, dynamic policies driven by measurement-

based resource control algorithms. These mechanisms are

present within the Resource Brokers, which are responsible for

the policy-based decision within the RMS. In a CNQF QoS

domain with wireless/fixed access edge networks as well as a

core network, the RBs could be Wireless Access Resource

Brokers (RBs), Fixed Access Resource Brokers (FARB) or Core

Network Resource Brokers (CNRB).

Fig.1. CNQF architecture

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

331

In such configuration, the WARB and FARB will interface

with the CNRB as shown in Fig. 1. This then allows for inter

FARB/WARB resource brokerage by the CNRB thus enabling

scalable end-to-end management of resources along the transport

plane within the QoS administrative domain.

Another entity within the RMS is the lower layer MCAL

element, the Resource Controller (RC). The RCs implement the

logic of the policy actions that enable (re)configuration of QoS

mechanisms within the PEPs such as routers, gateways, switches

and other key nodes within the transport plane where QoS

mechanisms are implemented. Each set of policy actions enabled

by the RC is mapped to specific policy condition(s) evaluated

within decision entities (RB) in response to events defined

within the QoS policies.

Each RB (WARB, FARB, CNRB) is interfaced with one or

more corresponding RCs (FARC, WARC, CNRC) in the MCAL

layer. The RCs perform different configuration and control

functions depending on where the PEPs are located on the

transport plane. For instance, an RC located in the edge router

(PEP) may be responsible for packet marking (e.g. DiffServ

Code Points, DSCP marking in a DiffServ domain) in response

to CNRB policy decisions. While in an edge wireless access

network, an RC may be responsible for configuration of gateway

nodes to dynamically map layer 2 QoS parameters (e.g. WiMAX

QoS classes) to layer 3 IP QoS parameters (e.g. DiffServ DSCPs

or MPLS LSPs) for different flows.

3.2 MEASUREMENT AND MONITORING

SUBSYSTEM (MMS)

The ability to monitor all network devices and network

elements is vitally important to the operation of CNQF. The

MMS provides this capability within the framework by

incorporating both passive and active measurement capabilities.

MMS facilitates closed-looped, adaptive and measurement-

based QoS control without which CNQF will be limited to

providing open-loop QoS provisioning based on, for example

pre-determined end-to-end resource allocation derived from a

priori QoS negotiations. With MMS in the loop, fine-grained

resource allocation and QoS control could be achieved through

feedback of measurement data to the RMS.

The MMS consists of distributed network monitoring entities

(NMs) located at the PEPs for measurement and monitoring

collection. These NMs also form part of the MCAL layer.

Centralized measurement capability is provided by another

MMS entity, the CMM (Central Measurement and Monitoring).

If required, the NMs interface to the CMM which serves as an

aggregating entity for the entire MMS and could the provide

high level summaries that are useful for gauging the health of

the network via visualization interfaces on a centralized

management station for example. The NMs passive and active

measurement mechanisms are explained in section 4 where their

implementation within a Java-based CNQF prototype is

discussed.

3.3 CONTEXT MANAGEMENT AND

ADAPTATION SUBSYSTEM (CAS)

PBNM systems such as CNQF stand to benefit from the use

of context information to drive policies/policy adaptation. This is

because context information equips the management system

with increased intelligence and ability to adapt service provision,

resource allocation, and QoS control in a more flexible and

efficient manner. It also gives more autonomy to the system to

respond to highly dynamic operational conditions. For example,

resource allocation may be made responsive to different user

contexts such as location, time, device capability, battery

capacity etc. Through context-awareness, the PBNM system

may apply different resource management policies to different

„contexts‟. For example a user may receive different bandwidth

allocations or may be re-assigned to a different QoS class in

different locations if the network is aware of the user‟s location

(context) and is able to allocate location-dependent usage

through context-aware policies.

As shown in Fig.1, CNQF provides context-aware

functionality through its Context Management and Adaptation

Subsystem (CAS). CAS consists of distributed Context

Acquisition Function blocks (CAF) instantiated in each access

network. The CAFs are PDPs that execute context-aware or

context-driven policies within the CNQF system. Each CAF

elements has associated Adaptation Servers (ADs) which are

function blocks that configure/reconfigure PEPs directly affected

by context-driven policy decisions in the CAF. Entities that can

be characterised by context within the CNQF PBNM system

could be physical objects e.g. a user device, router, switch,

gateway node, physical link, wireless channel; or could be a

virtual object such as MPLS path, or a VPN tunnel.

An example use case scenario involving CAS within a

CNQF administered wireless network is as follows. The CAF

entity would direct the ADs element to configure the Radio

Access Network (RAN) node according to predefined context-

aware handover management policies, where e.g. a pre-

configured user profile, location, or speed of user device

provides the „context information‟ for executing a particular

network-centric handover strategy according to policies. Other

exemplary use case scenarios for CNQF based context-driven

QoS control and resource allocation can be found in our

previous work [15] and [16].

4. CNQF FRAMEWORK IMPLEMENTATION

The CNQF architecture which is designed as a PBNM

system with distributed entities within a layered structure has

been presented in the previous section. In this section, we

present the implementation of a Java-based working CNQF

prototype built using the open-source NetBeans IDE 6.9

platform. Presently, distributed entities of the MMS and RMS

subsystems have been implemented providing capability for

adaptive, measurement-based QoS control based on the CNQF

architecture.

4.1 JAVA BASED CNQF PROTOTYPE

4.1.1 RMS Implementation: Resource Broker/Resource

Controller Chain:

As mentioned earlier, the resource management decision

logic which are designed to be driven by high-level policies

reside within the RBs. The RBs communicate with the RC

elements which implement the policy actions at the designated

S Y. YERIMA et al.: DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED

NETWORKS

332

PEP. The CNQF RB is built such that high-level policies entered

within a GUI policy editor in the administrative layer are

mapped into a set of commands (written in Java) within the

decision logic. The implementation of the decision logic will

differ depending on whether the RB plays the role of CNRB,

WARB or FARB. The commands are Java code segments that

invoke the services of instances of other MCAL entities i.e.

network monitoring and resource control elements that are

installed and running at the PEPs within the network. For

instance, a high level CNQF policy that has an action part:

Configure Edge Router will be mapped to the following Java

code segment within the RB:

new ResCon

ResCon.ConfigureEdge ()

This creates an instance of the Resource Controller interface

within the RB that in turn calls the remote ConfigureEdge()

method (which provides remote edge router configuration

services for the RB policies) using Java RMI (remote Method

Invocation) technology. The corresponding remote RC instances

are installed on the PEPs and these are implemented as

ResConImpl class. ResConImpl implements the methods such as

ConfigureEdge(), ConfigureCore(), and a host of others that can

be invoked by the RB via the RMI communication interface.

Details of the methods implementation will depend on the PEP

type i.e. whether it is a router, switch or gateway and also the

specific APIs available for interacting with the internal

mechanisms. Thus, the ResConImpl class is the wrapper class

which can be customized to wrap the functionality of specific

QoS mechanisms within the heterogeneous PEPs thus exposing

a homogenous API and enabling technology independent RMS

to be achieved.

Since the current CNQF prototype implementation is

deployed on a testbed with Linux-based routers as the key PEPs,

the ReSConImpl class which implements the RC functionalities

within the various methods utilizes Linux Kernel APIs. This

allows for interaction with the Linux TC (traffic control) utility

and other utilities for configuration of the routers in response to

the policy actions invoked by the RB decision logic.

4.1.2 MMS Implementation: NetMon Class:

The network monitoring entity NM of the MMS has been

implemented as a NetMon class. This allows for closed-loop and

autonomous QoS control within the prototype. Both active and

passive measurement capabilities have been incorporated. The

passive measurement aspect is based on SNMP using available

Management Information Blocks (MIBs). Thus, CNQF can

create and install instances of NetMon at various PEPs where

desired provided they are also SNMP-enabled PEPs. The active

measurement functionality is based on probe packets injected

into the network to provide measurements of loss and delay

metrics.

4.1.3 MMS Passive Measurement Implementation:

CNQF passive measurement functionality is provided within

the NetMon via the SNMP protocol. During runtime/deployment,

a centralized NetMon instance can be configured to poll

network-wide measurements using the IP addresses of the

routers‟ interfaces for example. This constitutes the Centralized

Measurement and Monitoring (CMM) mode.

Fig.2. Sample snapshot of an admin interface within the current CNQF prototype

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

333

Alternatively the NetMon instances can run on each router

while pre-processing and sending measurement data on demand

to other CNQF entities thereby minimizing control/management

network traffic overhead. The CNQF NetMon SNMP agent is

built using SNMP4j [17], an open source object oriented SNMP

API for Java managers and agents. SNMP4j supports command

generation (manager mode) and command responding (agent

mode) as well as synchronous and asynchronous requests.

Table.1 illustrates the RFC 1213 MIB OIDs (Object IDs) used

within the NetMon class for bandwidth monitoring.

Table.1. MIB OIDs used in CNQF NetMon class (RFC 1213)

MIB object Description OID

ifInOctets

The total number of

octets received on

the interface,

including framing

characters

1.3.6.1.2.1.2.2.1.10.2

ifOutOctets

The total number of

octets transmitted out

of the interface,

including framing

characters

1.3.6.1.2.1.2.2.1.16.1

ifSpeed

An estimate of the

interface's current

bandwidth in bits/sec

1.3.6.1.2.1.2.2.1.5.1

From the MIB objects, NetMon calculates the interface or

link bandwidth using:

BW (bits/s) = (O(t) – O(t-Δt) *8)/ Δt (1)

Where Δt is the interval between two SMNP get operations that

are used to read the MIB values O(t) which is basically a counter

indicating the number of octets sent (ifOutOctets) or received

(IfInOctets) on the network interface. Since the MIB variables

are stored as counters, two poll cycles are taken by the NetMon

instance and the difference is calculated to get the bandwidth.

Utilization is calculated using:

BWU (%) = (O(t) – O(t - Δt) *8*100)/ (Δt * ifSpeed) (2)

Within NetMon class, the average bandwidth is also tracked

using the exponentially weighted moving average:

BW(t) = (1-α) * BW (t - Δt) + α* BW(t) (3)

The QoS policies processed within the RBs would typically

leverage these passive measurements collected by the NetMon

instances to influence policy decisions (for example those

related to bandwidth management).

4.1.4 MMS Active Measurement Implementation:

The NetMon active measurement mechanism is implemented

using two main techniques: packet capture and network probes.

This has been built in order to allow CNQF prototype

autonomously derive network metrics that are unavailable from

the use of SNMP MIBs.

Packet capture is implemented within NetMon with an open-

source version of jNetPcap [18]. jNetPcap is an open-source

Java library that contains a Java wrapper for nearly all libpcap

library native calls. (libpcap is a portable C/C++ library for

network traffic capture which allows for „sniffing‟ the network

from within an application). jNetPcap decodes captured packets

in real-time and also provides a large library of network

protocols. Furthermore, users can easily add their own protocol

definitions using Java SDK. With the packet capture mechanism

inbuilt, NetMon is able to perform real-time monitoring at any

network interface within the CNQF QoS domain.

NetMon also uses the open-source Bwping utility to send

probe packets into the network. Bwping enables estimation of

bandwidth, packet loss and response times between two hosts. It

uses ICMP (Internet Control Messaging Protocol) echo

request/reply mechanisms and does not require any special

software on the remote host, only the ability to respond to ICMP

echo request messages.

Policy-based admission control is one aspect where the

MMS NetMon entities can be leveraged for adaptive, closed-

loop PBNM functionality. Real-time measurements of

bandwidth, loss and delay are fed into the RB decision engines

where admission control decisions are made using algorithms

that exploit the NetMon-measured QoS metrics. Furthermore,

the currently implemented passive and active NetMon

mechanisms allow the CNQF prototype to build a map of the

network state in real-time. Several in-built graph visualization

tools for real-time monitoring are also present within the CNQF

admin interface some of which are depicted in Fig.2.

4.2 LINUX BASED TESTBED IMPLEMENTATION

CNQF prototype is constructed and evaluated on a Linux-

based testbed. The configuration is shown in Fig.3. The CNQF

testbed consists of two Linux-based edge routers and a Linux-

based core router. These elements constitute the PEPs each

having an instance of CNQF RC (ResConImpl) that interacts

with the Linux router kernel to set various parameters that

enable (re)configuration of QoS management strategies

stipulated in the high-level policies processed by the RB.

As mentioned earlier, the Linux TC (traffic control) utility in

the kernel provides commands for implementing packet

marking, classification, queuing disciplines, and policing of

flows (enabling transport layer QoS mechanisms). Within the

testbed, the RCs employ TC commands for low level

configuration which have equivalent mappings to the RB Java

code that implement the high level policy actions. The testbed

elements include:

 CNQF management station: houses central CNQF

management application with the GUI policy editing tool and

RMS CNRB implemented in Java which invokes policy

actions via remote RCs (ResConImpl instances) installed at

the PEPs (routers).

 Edge routers A and B: Ubuntu 10.0.4 Linux PCs with 2.66

GHz Intel Xeon, 3GB RAM, configured as edge routers with

TC utility installed to enable configuration of the router

interface(s) for ingress packet marking, and for egress

classification, queuing and policing via RC‟s response to

CNQF policy decisions.

 Core router: Ubuntu 10.0.4 Linux PC with 2.66 GHz Intel

Xeon, 3GB RAM, with TC utility installed to enable

configuration of packet classifiers and filters through CNQF

policies also via an RC instance.

S Y. YERIMA et al.: DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED

NETWORKS

334

Fig.3. CNQF development and evaluation test bed

 Traffic generators: The Ntools [19] traffic generator is used

in some experiments to generate multi-client traffic with

different flow characteristics including constant bit rate

(CBR), On-Off traffic, and variable bit rate (VBR) traffic.

5. CONDUCTED PROTOTYPE VERIFICATION

TESTS

In order to validate key aspects of the prototype we carried

out experiments with real and generated traffic flows on the

testbed. First the flows will be observed in a baseline scenario

where CNQF is not deployed or enabled. Then we will make a

comparative analysis with the case where the CNQF

functionalities are in place or enabled in order to evaluate

CNQF‟s impact on QoS configuration and control.

The key functionalities we want to validate are the RMS

ResCon implementation and NetMon measurement and

monitoring mechanisms. These elements form the core

functionality needed to enable closed-loop adaptive QoS control

and resource management within the CNQF framework.

5.1 TRAFFIC QOS MANAGEMENT

CONFIGURATION VIA RESCONIMPL

As described in section 3, the RBs process high-level

policies to drive decision making which triggers the actions to be

taken in response to policy conditions within the policy rules.

Recall that the RC (implemented as ResConImpl class) is the

element responsible for configuration of the QoS mechanisms

within the PEPs i.e. edge routers and core routers in our testbed.

Hence, the RC contains the logic to configure the parameters via

the Linux TC API. Note that the same principle can be extended

to other kinds of PEPs. This allows for CNQF implementation in

large scale operational networks with heterogeneous PEPs

existing within the transport plane, since the RCs configuration

logic is meant to wrap the functionality of the PEPs whilst

hiding the implementation or configuration commands from the

(technology-independent) RB high level declarative policies.

In our tests we employ CNQF to configure the network for

DiffServ IP QoS management such that traffic coming from

edge networks attached to the ingress/egress routers on the

testbed may be classified into different DiffServ QoS classes.

The steps to achieve this via CNQF are:

1. Specify the high level policy rule for edge routers‟

configuration to be processed by the handling RB. e.g.:

Policy rule 1: If src.ip == 192.168.20.X MARK packets

with DSCP ==0x2e

which stipulates that all packets from edge network

192.168.20.X/24 will be marked with 0x2e within the DS

field of the IP header.

2. A command to configure the edge routers (ingress

interfaces) will be issued from the GUI running on the

CNQF management station. This will invoke the remote

RC instance to configure the edge routers with the TC

commands:

 tc class change dev eth0 classid 1:1 dsmark mask 0x0

value 0xb8

 tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32

match ip src 192.168.20.10/24 flow id 1:1

3. Specify the high level policy rule for core routers‟

configuration to be processed by the handling RB. e.g.:

Policy rule 2: If DSCP ==0x2e QUEUE packets with

PRIORITY 1

which stipulates that all packets with DSCP marked with

0x2e within the DS field of the IP header will be queued

with higher priority i.e. to receive Expedited Forwarding

(EF) Per-hop-behavior (PHB). Thus packets with

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

335

DSCP=0x2e will be forwarded with higher priority within

the core routers.

4. A command to configure the core routers (egress

interfaces) will be issued from the GUI running on the

CNQF management station. This will invoke the remote

RC instance to configure the core routers with the TC

command:

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32

match ip tos 0xb8 0xfc flow id 1:1

Note that these configurations could be conducted

dynamically by specifying adaptive policies that could

autonomously change the configurations to suit different

contexts or network conditions. But for the purpose of our

validation tests, traffic from edge networks connected to the

testbed will be observed using the CNQF NetMon entities and a

comparison will be made between scenarios where the above

policies are disabled and where they have been applied

according to the steps outlined previously.

5.2 VALIDATION TESTS

The policies enabled within the CNQF in the previous

section allow packets from a particular edge network to get

DiffServ EF priority treatment by tagging the packets with EF

DSCP. Expectedly, without these polices enabled, the tagged

traffic from that particular edge network will have to compete

with untagged flows from the other edge networks for resources.

Fig.4 shows the aggregate traffic from all the connected edge

networks captured using the NetMon passive measurement

mechanism built with SNMP4j. The figure depicts the temporal

variation in bandwidth (link) utilization on the egress interface

of the ingress edge router A (see Fig.3). Note that the total link

capacity between edge router A and the core router B is 1Gps.

The flows from the edge networks have been configured to

arrive at the ingress edge router A with exponentially distributed

inter-arrival times using the open source Ntools traffic generator.

After an exponentially distributed period, each arriving flow is

terminated. During this time the tagged flow from the edge

network is observed at both ingress and egress routers using the

installed CNQF NetMon instances to determine the effect of

configuration policies on the flow. Fig.4 shows that the

aggregate traffic at router A peaks at around 600 Mbps, while at

around time 810s from the start of the experiment, the last

arriving flow has been terminated.

5.2.1 Validation Tests Without CNQF Configuration:

During the first experimental scenario (where the CNQF

QoS policies were not applied) the aggregate traffic as observed

from Fig.4 was applied to the testbed. At the same time, we

observe that 1 Mbps flow from the 192.168.20.x/24 edge

network captured at the ingress of the router A depicted in Fig.5

showing a consistent pattern. Simultaneously, the NetMon

instance at the egress edge router where the link capacity

(between router C and router B) is 100 Mbps shows considerable

degradation of the flow QoS as a result of congestion within the

edge-to-edge link from router A to B (Fig.6). The congestion

phenomenon occurs when the aggregate traffic (Fig.4) leaving

the egress interface of the ingress edge router A approaches and

exceeds the bottleneck edge-to-edge capacity of 100 Mbps.

Fig.4. Aggregate traffic from all edge networks to the test bed

ingress router observed from the CNQF NetMon tool (scenario1)

Fig.5. Tagged 1 Mbps flow observed at the ingress router a

using NetMon packet capture mechanism (scenario 1)

Fig.6. Tagged 1 Mbps flow observed at the egress router B.

Degradation occurs due to congestion as aggregate traffic causes

edge-to-edge congestion (scenario 1)

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

B
it

r
a

te

(b

p
s)

Time (s)

Aggregate traffic (scenario 1)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Tagged flow (source)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Tagged flow

Time (s)

B
it

ra
te

 (
b

p
s)

Time (s)

B
it

ra
te

 (
b

p
s)

Time (s)

B
it

ra
te

 (
b

p
s)

S Y. YERIMA et al.: DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED

NETWORKS

336

Fig.7. Average end-to-end delay without CNQF configuration

policies as observed by the CNQF NetMon active measurement

tool (scenario 1)

Fig.8. Packet loss rate without CNQF configuration policies as

observed by the CNQF NetMon active measurement tool

(scenario 1)

Fig.7 shows the measurement of average end-to-end delay

from the NetMon Bwping-based active measurement mechanism

depicting up to 40 ms end-to-end average delay at the times the

congestion situation occur. At the same time the packet loss rate

(as seen by the NetMon Bwping-based active measurement) is

depicted in Fig.8 to reach above 60% most times but peaking at

100% on a few occasions thus confirming the occurrence of a

congestion situation as a (result of the 100 Mbps egress

bottleneck) between these times. Note that all the measurements

depicted in Figs.4-9 were taken simultaneously.

5.2.1 Validation Tests With CNQF Configuration:

Using the previous scenario as baseline, another test was

conducted after having configured the testbed nodes (Policy

Enforcement Points) with the CNQF policies as outlined in

section 5.1. The aim was to validate the operation of the

ResConImpl and RB implementations as well as the inter-

operational functionality of the entities with the MMS NetMon

as crucial building blocks of the CNQF framework.

Figs.9-13 illustrate NetMon measurements taken

simultaneously while conducting the test of the second scenario

with CNQF enabled via the GUI tool in running on the

management station (see Fig.3). Fig.9 again shows a similar

aggregate background traffic pattern to the previous scenario

(Fig.4) as captured from the ingress router A. At the same time

the 1Mbps flow under observation at the egress router B shows

much better resilience to congestion as seen from Fig.11

compared to the previous scenario without CNQF control which

resulted in the degradation observed in Fig.6.

Figs.12 and 13 show the average end-to-end delay and the

packet loss rate as obtained from the NetMon Bwping-based

tool. This time the measurements are configured to estimate the

metrics for the priority traffic (i.e. EF traffic) by marking the

probe packets also with EF DSCP within its IP header. It can be

seen that a consistent pattern of average end-to-end delay falling

between 28 and 29 ms is observed compared to the values of

around 40 ms observed without CNQF policies (Fig.7). Likewise

Fig.13 depicts a much lower loss rate recorded compared to the

situation in Fig.8.

Fig.9. Aggregate traffic from all edge networks to the testbed

ingress router observed from the CNQF NetMon tool (scenario2)

Fig.10. 1 Mbps flow observed at the ingress router A using the

NetMon packet capture mechanism (scenario 2)

0

5

10

15

20

25

30

35

40

45

A
v

e
r
a

g
e
 d

e
la

y
 (

m
s)

Time (s)

Average edge-to-edge delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
a
c
k

e
t

lo
ss

 r
a

te

Time (s)

Packet loss rate

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Aggregate traffic (Scenario 2)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Tagged flow (source)

Time (s)

A
v

er
a

g
e

d
el

a
y

 (
m

s)

Time (s)

P
a

ck
et

 l
o

ss
 r

a
te

Time (s)

B
it

ra
te

 (
b

p
s)

Time (s)

B
it

ra
te

 (
b

p
s)

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

337

Fig.11. 1 Mbps tagged flow observed at the egress router B.

Degradation is mitigated by CNQF policies even though there is

congestion as aggregate background traffic changes with the

pattern shown in Fig.9 (scenario 2)

Fig.12. Average end-to-end delay with CNQF configuration

policies as observed by the CNQF NetMon active measurement

tool configured to measure EF traffic metrics (scenario 2)

Fig.13. Packet loss rate with CNQF configuration policies as

observed by the CNQF NetMon active measurement tool

configured to measure EF traffic metrics (scenario 2)

The results presented indicate the successful execution of the

high-level RB policies operating within the CNQF management

station. This in turn validates the correct operation of the

interface mechanism implemented for RB to RC communication

within the framework prototype. Those in Fig.s 10 to 13 are

indicative of the successful policy-driven reconfiguration of the

PEPs (i.e. Linux based routers) via the implemented RC

elements of the prototype. Lastly, all the measurements depicted

were captured by the implemented NetMon mechanisms. Hence,

from our current investigation we can conclude that CNQF RMS

and MMS elements implemented within the framework

prototype as well as their interoperability have been validated to

be operating as expected and in accordance with the policy

framework architecture.

6. SUMMARY AND FURTHER WORK

CNQF is designed to provide an infrastructure for policy-

based management of converged networks through the various

functional elements that make up its subsystems. Its design

allows for closed-loop, scalable, and adaptive end-to-end QoS

control in converged networks. In this paper, we presented the

implementation of a Java based prototype and evaluated its

ability to facilitate policy-based QoS management when

deployed on a Linux-based testbed. The conducted tests validate

the framework architecture as key functional elements

implemented within the prototype interworked as expected. The

CNQF test bed is currently under expansion to interconnect with

the IU-ATC Theme 10 Mobile Network testbed located at

University of Surrey and IIT Madras. When accomplished, it

will allow CNQF to be deployed under a wider range of

experimental scenarios.

ACKNOWLEDGMENT

This work is funded by the EPSRC-DST India-U.K.

Advanced Technology Centre of Excellence in Next Generation

Networks, Systems and Services (IU-ATC). www.iu-atc.com.

REFERENCES

[1] K. S. Phanse, L. A. DaSilva, and S. F. Midkiff, “Design and

Demonstration of Policy-Based Management in a Multi-

hop Ad Hoc Network”, AD HOC Networks, Vol.3, No. 3,

pp. 389-401, 2005.

[2] 3GPP TS 23.207: 3
rd

 Generation Partnership Project; “End-

to-end Quality of Service (QoS) concept and architecture”,

(Release 9), 2009

[3] ETSI ES 282 003: “Telecoms and Internet converged

Services and Protocols for Advanced Networking”

(TISPAN); Resource and Admission Control Subsystem

(RACS); Functional Architecture, 2006.

[4] IETF Policy Framework Working Group web page:

http://www.ietf.org/wg/concluded/policy.html

[5] B. C. Kim et al., “A QoS Framework Design Based on

DiffServ and SNMP for Tactical Networks”, in. Proc. IEEE

MILCOM ’08, San Diego, California, pp. 1-7, 2008.

0.00

200,000.00

400,000.00

600,000.00

800,000.00

1,000,000.00

1,200,000.00

B
it

r
a

te
 (

b
p

s)

Time (s)

Tagged flow

0

5

10

15

20

25

30

35

A
v

e
r
a
g

e
 d

e
la

y
 (

m
s)

Time (s)

Average edge-to-egde delay

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
a

k
e
t

L
o

ss
 r

a
te

Time (s)

Packet loss rate

Time (s)

A
v

er
a

g
e

d
el

a
y

 (
m

s)

Time (s)

B
it

ra
te

 (
b

p
s)

Time (s)

P
a

ck
et

 l
o

ss
 r

a
te

S Y. YERIMA et al.: DESIGN AND IMPLEMENTATION OF A MEASUREMENT-BASED POLICY-DRIVEN RESOURCE MANAGEMENT FRAMEWORK FOR CONVERGED

NETWORKS

338

[6] P. Nanda and A. Simmonds, “A Scalable Architecture

Supporting QoS Guarantees Using Traffic Engineering and

Policy Based Routing in the Internet”, International Journal

of Communications, Networks and System Sciences,

pp.583-590, 2009.

[7] V. G. Oziany, R. Good, N. Carrilho, N. Ventura, “XML-

Driven Framework for Policy-Based QoS Management of

IMS networks”, in Proc. IEEE GLOBECOM 2008, New

Orleans, USA, pp. 1-6, 2008.

[8] S. Cha et al., “An EJB based Platform for Policy-Based QoS

Management of DiffServ Enabled Next Generation

Networks”, in Proc. ICN 2005, LNCS 3420, pp. 794–801,

2005.

[9] J .Y. Kim, J.H. Hahm, Y.S. Kim, J.K. Choi, “Policy-based

QoS Control Architecture Model using API for Streaming

Services”, in Proc. International Conference on

Networking, International Conference on Systems and

International Conference on Mobile Communications and

Learning Technologies (ICNICONSMCL'06), pp. 102.

[10] Alex Vallejo, Agustin Zaballos, Jaume Abella, Josep M.

Selga, Carles Duz, “Performance of a Policy-Based

Management System in IPv6 Networks Using COPS-PR”,

in Proc. Sixth International Conference on Networking

(ICN'07), pp. 37, 2007.

[11] X. Guo et al., “A Policy-Based Network Management

System for IP VPN”, International Conference on

Communication Technology Proceedings (ICCT 2003),

Vol.2, pp.1630-1633, 2003

[12] N. Carrilho and N. Ventura, “Policy-Based Management of

a DiffServ Network Using XML Technologies”, in Proc.

Third International Conference on Web Information

Systems and Technologies, 2007

[13] D. Weng and M. A. Bauer, “Using Policies to Drive

Autonomic Management of Virtual Systems”, in Proc. 6th

International Conference on Network and Service

Management, IEEE CNSM 2010, pp.258-261.

[14] O. T. Brewer and A. Ayyagari, “Comparison and analysis of

Measurement and Parameter Based Admission Control

Methods for Quality of Service (QoS) Provisioning”,

Military Communications Conference, MILCOM 2010,

pp.184-188.

[15] S. Y. Yerima, G. P. Parr, C. Peoples, S. McClean, P. J.

Morrow, “A Framework for Context-Driven End-to-End

QoS Control in Converged Networks”, in Proc. 6th

International Conference on Network and Service

Management, IEEE CNSM 2010, pp. 250-253.

[16] S. Y. Yerima, G. P. Parr, S. McClean, P. J. Morrow,

“Modelling and Evaluation of a Policy-Based Resource

Management Framework for Converged Next Generation

Networks”, in Proc. IFIP/IEEE International Symposium on

Integrated Network Management, IM 2011, Dublin, Ireland.

[17] The SNMP API for Java: http:/www.snmp4j.org [last

accessed 29
th

 May 2011].

[18] jNetPcap open source protocol analysis SDK:

http://www.jnetpcap.com [last accessed 29
th

 May 2011].

[19] Ntools traffic generator, analyser and network emulator

package for Linux: http://www.norvegh.com/ntools/ [last

accessed 29
th

 May 2011].

