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Abstract 

This paper presents the design and implementation of a 

measurement-based QoS and resource management framework, 

CNQF (Converged Networks’ QoS Management Framework). CNQF 

is designed to provide unified, scalable QoS control and resource 

management through the use of a policy-based network management 

paradigm. It achieves this via distributed functional entities that are 

deployed to co-ordinate the resources of the transport network 

through centralized policy-driven decisions supported by 

measurement-based control architecture. We present the CNQF 

architecture, implementation of the prototype and validation of 

various inbuilt QoS control mechanisms using real traffic flows on a 

Linux-based experimental test bed.   
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1. INTRODUCTION

Efficient control and management infrastructure are needed 

to provide coordinated, scalable and transparent resource 

management and QoS control as fixed and wireless networks 

converge towards IP-based transport in next generation 

networks. In order to meet this requirement however, the 

complexity of configuration, control and management operations 

needed to support transparent service provisioning must be 

overcome. Policy-based network management (PBNM) is one 

promising approach that provides this capability by easing the 

management of complex networks through automated and 

distributed structures using centralized policies. To this end, we 

have developed a QoS management framework, CNQF 

(Converged Networks QoS Management Framework) based on 

the PBNM paradigm.  

CNQF is aimed at providing homogenous, unified and 

adaptive measurement-based QoS control and resource 

management over heterogeneous access technologies. By 

leveraging PBNM paradigm, the CNQF architecture provides 

the means for application transparency across existing and 

emerging access technologies, thus permitting applications to be 

transport-layer agnostic when deployed.  

As part of the ongoing IU-ATC (India-UK Advanced 

Technology Centre of excellence) project, an experimental 

CNQF framework prototype is being built to provide a platform 

for development and evaluation of advanced algorithms and 

mechanisms for policy-based QoS management in converged 

next generation networks. The CNQF prototype is being 

developed in Java within a configurable testbed designed to 

provide representative converged networks scenarios for tests 

and evaluations.  This paper presents the implementation of 

CNQF subsystems and entities as well as initial experiments 

conducted to test and validate various underlying mechanisms 

enabling QoS control and management within the CNQF 

architecture. 

The rest of the paper is organized as follows. The next 

section provides the background and motivation for our work. 

Section 3 explains the CNQF architecture design and the 

constituent subsystems. Section 4 deals with the implementation 

of the CNQF prototype as well as the evaluation test bed 

configuration. Section 5 presents the tests conducted on the 

testbed to validate the operation of the current CNQF 

implementation.  

2. BACKGROUND AND MOTIVATION

One of the key advantages of Policy-based network 

management (PBNM) is that it can simplify the administration 

of complex operational characteristics of a network, including 

QoS, access control, network security, and IP address allocation 

[1]. The PBNM architectures published by the various 

standardization bodies can be found in [2], [3], and [4], for 

example. Telecoms and Internet Converged Services and 

Protocols for Advanced Networks (TISPAN) technical 

committee of the European Telecommunications Standards 

Institute (ETSI) has defined a Resource and Admission Control 

Subsystem (RACS) consisting of a Service-based Policy 

Decision Function (SPDF)  and Access Resource Admission 

Control Function (A-RACF) [3]. Both of these interact with 

Policy Enforcement Points (PEPs) in the underlying networks. 

In that regard, the architecture shares similarity with the IETF 

policy model which specified a policy enforcement point (PEP) 

and a Policy Decision Point (PDP) as part of its architecture [4]. 

Similarly, Third Generation Partnership Project (3GPP) defined 

a Policy Decision Function (PDF) in their Release 5/6 policy 

framework [2].  

While the standards bodies have defined architectures, 

protocols and interfaces that are crucial to interoperability of 

disparate vendor equipments that conform to the same standards, 

details of implementation are left out and are usually vendor-

specific. Hence, with new wired and wireless technologies 

emerging coupled with the need to address their convergence 

and management requirements, PBNM based framework and 

architectures are still being actively researched.  

Kim et. al., for example, present an IP QoS management 

framework in [5] designed to provide QoS control in ad hoc 

military environments. The framework is based on SNMP and 
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DiffServ. Similarly, a policy-based multi-layer QoS architecture 

for network resource control based on policy-based routing and 

Traffic Engineering (TE) is presented in [6]. In [7] Oziany et. al. 

present an XML-driven QoS management framework for IMS 

based networks.  Other works such as [1], [8]-[14] can be found 

employing PBNM in different contexts including VPNs, Multi-

hop ad hoc networks, MPLS-enabled networks and virtualization 

environments.  

An important distinguishing feature of the CNQF design 

presented in this paper from the aforementioned is the 

incorporation of context management functionality as an 

important building block of its architecture thus enabling added 

intelligence to provide adaptive policy-driven decisions within 

the framework. Furthermore, our work also contributes in 

bridging the gap between the PBNM architectural definitions 

within the standards on the one hand, and the implementation 

and experimentation on the other hand which serves to provide 

useful insight gained through evaluation studies. Hence, this 

paper not only presents the CNQF architectural design 

framework but also implementation of key subsystems and 

experimental studies to validate their operation. 

3. THE CNQF ARCHITECTURE 

The CNQF architecture is presented in this section. It is 

designed with three logical subsystems including: Measurement 

and Monitoring Subsystem (MMS), RMS (Resource 

Management Subsystem) and the Context Management and 

Adaptation Subsystem (CAS). While functional elements within 

the subsystems are designed to be integrated horizontally, they 

also form part of a hierarchical structure as is typical of PBNM 

systems [7]. The hierarchical structure is depicted in Fig.1.  

The top level consists of tools that provide centralized 

administrative capabilities such as Graphical User Interfaces 

(GUI) for high level configuration, and policy entry/editing; 

visualization tools for network-wide configuration and status 

monitoring; and central high-level repositories.  The PDL 

(Policy Decision Layer) comprises of various Policy Decision 

Points (PDPs) such as the Resource Brokers that form part of the 

RMS; these are centrally managed via the PAL (Policy 

Administrative Layer). The bottom layer is the MCAL 

(Measurement, Control and Adaptation) layer that consists of 

elements that directly interface with the Policy Enforcement 

Points (PEPs) in the transport network. These elements include 

the various Resource Controllers that are part of the RMS and 

also the Network Monitors that are part of the Measurement and 

Monitoring Subsystem. 

3.1 RESOURCE MANAGEMENT SUBSYSTEM 

(RMS) 

The RMS within CNQF framework is primarily designed to 

provide co-ordination, control, and allocation of resources along 

the end-to-end transport path of the CNQF QoS domain. The 

subsystem is structured such that the underlying 

allocation/control mechanisms could be based on simple static 

policies to complex, dynamic policies driven by measurement-

based resource control algorithms. These mechanisms are 

present within the Resource Brokers, which are responsible for 

the policy-based decision within the RMS. In a CNQF QoS 

domain with wireless/fixed access edge networks as well as a 

core network,  the RBs could be Wireless Access Resource 

Brokers (RBs), Fixed Access Resource Brokers (FARB) or Core 

Network Resource Brokers (CNRB). 

 

Fig.1. CNQF architecture 
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In such configuration, the WARB and FARB will interface 

with the CNRB as shown in Fig. 1. This then allows for inter 

FARB/WARB resource brokerage by the CNRB thus enabling 

scalable end-to-end management of resources along the transport 

plane within the QoS administrative domain.  

Another entity within the RMS is the lower layer MCAL 

element, the Resource Controller (RC). The RCs implement the 

logic of the policy actions that enable (re)configuration of QoS 

mechanisms within the PEPs such as routers, gateways, switches 

and other key nodes within the transport plane where QoS 

mechanisms are implemented. Each set of policy actions enabled 

by the RC is mapped to specific policy condition(s) evaluated 

within decision entities (RB) in response to events defined 

within the QoS policies. 

Each RB (WARB, FARB, CNRB) is interfaced with one or 

more corresponding RCs (FARC, WARC, CNRC) in the MCAL 

layer. The RCs perform different configuration and control 

functions depending on where the PEPs are located on the 

transport plane. For instance, an RC located in the edge router 

(PEP) may be responsible for packet marking (e.g. DiffServ 

Code Points, DSCP marking in a DiffServ domain) in response 

to CNRB policy decisions. While in an edge wireless access 

network, an RC may be responsible for configuration of gateway 

nodes to dynamically map layer 2 QoS parameters (e.g. WiMAX 

QoS classes) to layer 3 IP QoS parameters (e.g. DiffServ DSCPs 

or MPLS LSPs) for different flows. 

3.2 MEASUREMENT AND MONITORING 

SUBSYSTEM (MMS) 

The ability to monitor all network devices and network 

elements is vitally important to the operation of CNQF. The 

MMS provides this capability within the framework by 

incorporating both passive and active measurement capabilities. 

MMS facilitates closed-looped, adaptive and measurement-

based QoS control without which CNQF will be limited to 

providing open-loop QoS provisioning based on, for example 

pre-determined end-to-end resource allocation derived from a 

priori QoS negotiations. With MMS in the loop, fine-grained 

resource allocation and QoS control could be achieved through 

feedback of measurement data to the RMS. 

The MMS consists of distributed network monitoring entities 

(NMs) located at the PEPs for measurement and monitoring 

collection. These NMs also form part of the MCAL layer. 

Centralized measurement capability is provided by another 

MMS entity, the CMM (Central Measurement and Monitoring). 

If required, the NMs interface to the CMM which serves as an 

aggregating entity for the entire MMS and could the provide 

high level summaries that are useful for gauging the health of 

the network via visualization interfaces on a centralized 

management station for example. The NMs passive and active 

measurement mechanisms are explained in section 4 where their 

implementation within a Java-based CNQF prototype is 

discussed. 

3.3 CONTEXT MANAGEMENT AND 

ADAPTATION SUBSYSTEM (CAS) 

PBNM systems such as CNQF stand to benefit from the use 

of context information to drive policies/policy adaptation. This is 

because context information equips the management system 

with increased intelligence and ability to adapt service provision, 

resource allocation, and QoS control in a more flexible and 

efficient manner. It also gives more autonomy to the system to 

respond to highly dynamic operational conditions. For example, 

resource allocation may be made responsive to different user 

contexts such as location, time, device capability, battery 

capacity etc. Through context-awareness, the PBNM system 

may apply different resource management policies to different 

„contexts‟. For example a user may receive different bandwidth 

allocations or may be re-assigned to a different QoS class in 

different locations if the network is aware of the user‟s location 

(context) and is able to allocate location-dependent usage 

through context-aware policies.  

As shown in Fig.1, CNQF provides context-aware 

functionality through its Context Management and Adaptation 

Subsystem (CAS). CAS consists of distributed Context 

Acquisition Function blocks (CAF) instantiated in each access 

network. The CAFs are PDPs that execute context-aware or 

context-driven policies within the CNQF system. Each CAF 

elements has associated Adaptation Servers (ADs) which are 

function blocks that configure/reconfigure PEPs directly affected 

by context-driven policy decisions in the CAF. Entities that can 

be characterised by context within the CNQF PBNM system 

could be physical objects e.g. a user device, router, switch, 

gateway node, physical link, wireless channel; or could be a 

virtual object such as MPLS path, or a VPN tunnel.  

An example use case scenario involving CAS within a 

CNQF administered wireless network is as follows. The CAF 

entity would direct the ADs element to configure the Radio 

Access Network (RAN) node according to predefined context-

aware handover management policies, where e.g. a pre-

configured user profile, location, or speed of user device 

provides the „context information‟ for executing a particular 

network-centric handover strategy according to policies.  Other 

exemplary use case scenarios for CNQF based context-driven 

QoS control and resource allocation can be found in our 

previous work [15] and [16]. 

4. CNQF FRAMEWORK IMPLEMENTATION 

The CNQF architecture which is designed as a PBNM 

system with distributed entities within a layered structure has 

been presented in the previous section. In this section, we 

present the implementation of a Java-based working CNQF 

prototype built using the open-source NetBeans IDE 6.9 

platform. Presently, distributed entities of the MMS and RMS 

subsystems have been implemented providing capability for 

adaptive, measurement-based QoS control based on the CNQF 

architecture.  

4.1 JAVA BASED CNQF PROTOTYPE 

4.1.1 RMS Implementation: Resource Broker/Resource 

Controller Chain: 

As mentioned earlier, the resource management decision 

logic which are designed to be driven by high-level policies 

reside within the RBs. The RBs communicate with the RC 

elements which implement the policy actions at the designated 
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PEP. The CNQF RB is built such that high-level policies entered 

within a GUI policy editor in the administrative layer are 

mapped into a set of commands (written in Java) within the 

decision logic. The implementation of the decision logic will 

differ depending on whether the RB plays the role of CNRB, 

WARB or FARB. The commands are Java code segments that 

invoke the services of instances of other MCAL entities i.e. 

network monitoring and resource control elements that are 

installed and running at the PEPs within the network. For 

instance, a high level CNQF policy that has an action part: 

Configure Edge Router will be mapped to the following Java 

code segment within the RB:  

new ResCon 

ResCon.ConfigureEdge ()  

This creates an instance of the Resource Controller interface 

within the RB that in turn calls the remote ConfigureEdge() 

method (which provides remote edge router configuration 

services for the RB policies) using Java RMI (remote Method 

Invocation) technology. The corresponding remote RC instances 

are installed on the PEPs and these are implemented as 

ResConImpl class. ResConImpl implements the methods such as 

ConfigureEdge(), ConfigureCore(), and a host of others that can 

be invoked by the RB via the RMI communication interface. 

Details of the methods implementation will depend on the PEP 

type i.e. whether it is a router, switch or gateway and also the 

specific APIs available for interacting with the internal 

mechanisms. Thus, the ResConImpl class is the wrapper class 

which can be customized to wrap the functionality of specific 

QoS mechanisms within the heterogeneous PEPs thus exposing 

a homogenous API and enabling technology independent RMS 

to be achieved.  

Since the current CNQF prototype implementation is 

deployed on a testbed with Linux-based routers as the key PEPs, 

the ReSConImpl class which implements the RC functionalities 

within the various methods utilizes Linux Kernel APIs. This 

allows for interaction with the Linux TC (traffic control) utility 

and other utilities for configuration of the routers in response to 

the policy actions invoked by the RB decision logic. 

4.1.2 MMS Implementation: NetMon Class:  

The network monitoring entity NM of the MMS has been 

implemented as a NetMon class. This allows for closed-loop and 

autonomous QoS control within the prototype. Both active and 

passive measurement capabilities have been incorporated. The 

passive measurement aspect is based on SNMP using available 

Management Information Blocks (MIBs). Thus, CNQF can 

create and install instances of NetMon at various PEPs where 

desired provided they are also SNMP-enabled PEPs. The active 

measurement functionality is based on probe packets injected 

into the network to provide measurements of loss and delay 

metrics.  

4.1.3 MMS Passive Measurement Implementation: 

CNQF passive measurement functionality is provided within 

the NetMon via the SNMP protocol. During runtime/deployment, 

a centralized NetMon instance can be configured to poll 

network-wide measurements using the IP addresses of the 

routers‟ interfaces for example.  This constitutes the Centralized 

Measurement and Monitoring (CMM) mode. 

 

Fig.2. Sample snapshot of an admin interface within the current CNQF prototype 
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Alternatively the NetMon instances can run on each router 

while pre-processing and sending measurement data on demand 

to other CNQF entities thereby minimizing control/management 

network traffic overhead. The CNQF NetMon SNMP agent is 

built using SNMP4j [17], an open source object oriented SNMP 

API for Java managers and agents. SNMP4j supports command 

generation (manager mode) and command responding (agent 

mode) as well as synchronous and asynchronous requests. 

Table.1 illustrates the RFC 1213 MIB OIDs (Object IDs) used 

within the NetMon class for bandwidth monitoring.  

Table.1. MIB OIDs used in CNQF NetMon class (RFC 1213) 

MIB object Description OID 

ifInOctets 

The total number of 

octets received on 

the interface, 

including framing 

characters 

 

1.3.6.1.2.1.2.2.1.10.2 

ifOutOctets 

The total number of 

octets transmitted out 

of the interface, 

including framing 

characters 

1.3.6.1.2.1.2.2.1.16.1 

ifSpeed 

An estimate of the 

interface's current 

bandwidth in bits/sec 

1.3.6.1.2.1.2.2.1.5.1 

From the MIB objects, NetMon calculates the interface or 

link bandwidth using: 

BW (bits/s) = (O(t) – O(t-Δt) *8)/ Δt                    (1) 

Where Δt is the interval between two SMNP get operations that 

are used to read the MIB values O(t) which is basically a counter 

indicating the number of octets sent (ifOutOctets) or received 

(IfInOctets) on the network interface.  Since the MIB variables 

are stored as counters, two poll cycles are taken by the NetMon 

instance and the difference is calculated to get the bandwidth. 

Utilization is calculated using: 

BWU (%) = (O(t) – O(t - Δt) *8*100)/ (Δt * ifSpeed)       (2) 

Within NetMon class, the average bandwidth is also tracked 

using the exponentially weighted moving average: 

BW(t) = (1-α) * BW (t - Δt) + α* BW(t)                 (3) 

The QoS policies processed within the RBs would typically 

leverage these passive measurements collected by the NetMon 

instances to influence policy decisions (for example those 

related to bandwidth management). 

4.1.4 MMS Active Measurement Implementation: 

The NetMon active measurement mechanism is implemented 

using two main techniques: packet capture and network probes. 

This has been built in order to allow CNQF prototype 

autonomously derive network metrics that are unavailable from 

the use of SNMP MIBs.  

Packet capture is implemented within NetMon with an open-

source version of jNetPcap [18]. jNetPcap is an open-source 

Java library that contains a Java wrapper for nearly all libpcap 

library native calls. (libpcap is a portable C/C++ library for 

network traffic capture which allows for „sniffing‟ the network 

from within an application).  jNetPcap decodes captured packets 

in real-time and also provides a large library of network 

protocols. Furthermore, users can easily add their own protocol 

definitions using Java SDK. With the packet capture mechanism 

inbuilt, NetMon is able to perform real-time monitoring at any 

network interface within the CNQF QoS domain. 

NetMon also uses the open-source Bwping utility to send 

probe packets into the network. Bwping enables estimation of 

bandwidth, packet loss and response times between two hosts. It 

uses ICMP (Internet Control Messaging Protocol) echo 

request/reply mechanisms and does not require any special 

software on the remote host, only the ability to respond to ICMP 

echo request messages.  

Policy-based admission control is one aspect where the 

MMS NetMon entities can be leveraged for adaptive, closed-

loop PBNM functionality. Real-time measurements of 

bandwidth, loss and delay are fed into the RB decision engines 

where admission control decisions are made using algorithms 

that exploit the NetMon-measured QoS metrics. Furthermore, 

the currently implemented passive and active NetMon 

mechanisms allow the CNQF prototype to build a map of the 

network state in real-time. Several in-built graph visualization 

tools for real-time monitoring are also present within the CNQF 

admin interface some of which are depicted in Fig.2. 

4.2 LINUX BASED TESTBED IMPLEMENTATION 

CNQF prototype is constructed and evaluated on a Linux-

based testbed. The configuration is shown in Fig.3. The CNQF 

testbed consists of two Linux-based edge routers and a Linux-

based core router. These elements constitute the PEPs each 

having an instance of CNQF RC (ResConImpl) that interacts 

with the Linux router kernel to set various parameters that 

enable (re)configuration of QoS management strategies 

stipulated in the high-level policies processed by the RB.  

As mentioned earlier, the Linux TC (traffic control) utility in 

the kernel provides commands for implementing packet 

marking, classification, queuing disciplines, and policing of 

flows (enabling transport layer QoS mechanisms). Within the 

testbed, the RCs employ TC commands for low level 

configuration which have equivalent mappings to the RB Java 

code that implement the high level policy actions. The testbed 

elements include: 

 CNQF management station: houses central CNQF 

management application with the GUI policy editing tool and 

RMS CNRB implemented in Java which invokes policy 

actions via remote RCs (ResConImpl instances) installed at 

the PEPs (routers). 

 Edge routers A and B: Ubuntu 10.0.4 Linux PCs with 2.66 

GHz Intel Xeon, 3GB RAM, configured as edge routers with 

TC utility installed to enable configuration of the router 

interface(s) for ingress packet marking, and for egress 

classification, queuing and policing via RC‟s response to 

CNQF policy decisions. 

 Core router: Ubuntu 10.0.4 Linux PC with 2.66 GHz Intel 

Xeon, 3GB RAM, with TC utility installed to enable 

configuration of packet classifiers and filters through CNQF 

policies also via an RC instance. 
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Fig.3. CNQF development and evaluation test bed 

 Traffic generators: The Ntools [19] traffic generator is used 

in some experiments to generate multi-client traffic with 

different flow characteristics including constant bit rate 

(CBR), On-Off traffic, and variable bit rate (VBR) traffic. 

5. CONDUCTED PROTOTYPE VERIFICATION 

TESTS 

In order to validate key aspects of the prototype we carried 

out experiments with real and generated traffic flows on the 

testbed. First the flows will be observed in a baseline scenario 

where CNQF is not deployed or enabled. Then we will make a 

comparative analysis with the case where the CNQF 

functionalities are in place or enabled in order to evaluate 

CNQF‟s impact on QoS configuration and control. 

The key functionalities we want to validate are the RMS 

ResCon implementation and NetMon measurement and 

monitoring mechanisms. These elements form the core 

functionality needed to enable closed-loop adaptive QoS control 

and resource management within the CNQF framework.  

5.1 TRAFFIC QOS MANAGEMENT 

CONFIGURATION VIA RESCONIMPL 

As described in section 3, the RBs process high-level 

policies to drive decision making which triggers the actions to be 

taken in response to policy conditions within the policy rules. 

Recall that the RC (implemented as ResConImpl class) is the 

element responsible for configuration of the QoS mechanisms 

within the PEPs i.e. edge routers and core routers in our testbed. 

Hence, the RC contains the logic to configure the parameters via 

the Linux TC API.  Note that the same principle can be extended 

to other kinds of PEPs. This allows for CNQF implementation in 

large scale operational networks with heterogeneous PEPs 

existing within the transport plane, since the RCs configuration 

logic is meant to wrap the functionality of the PEPs whilst 

hiding the implementation or configuration commands from the 

(technology-independent) RB high level declarative policies. 

In our tests we employ CNQF to configure the network for 

DiffServ IP QoS management such that traffic coming from 

edge networks attached to the ingress/egress routers on the 

testbed may be classified into different DiffServ QoS classes.  

The steps to achieve this via CNQF are: 

1. Specify the high level policy rule for edge routers‟ 

configuration to be processed by the handling RB. e.g.: 

Policy rule 1: If src.ip == 192.168.20.X MARK packets 

with DSCP ==0x2e  

which stipulates that all packets from edge network 

192.168.20.X/24 will be marked with 0x2e within the DS 

field of the IP header. 

2. A command to configure the edge routers (ingress 

interfaces) will be issued from the GUI running on the 

CNQF management station. This will invoke the remote 

RC instance to configure the edge routers with the TC 

commands: 

 tc  class change dev eth0 classid 1:1 dsmark mask 0x0 

value 0xb8 

 tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 

match ip src 192.168.20.10/24 flow id 1:1 

3. Specify the high level policy rule for core routers‟ 

configuration to be processed by the handling RB. e.g.: 

Policy rule 2: If DSCP ==0x2e QUEUE packets with 

PRIORITY  1  

which stipulates that all packets with DSCP  marked with 

0x2e within the DS field of the IP header will be queued 

with higher priority i.e. to receive Expedited Forwarding 

(EF) Per-hop-behavior (PHB). Thus packets with 
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DSCP=0x2e will be forwarded with higher priority within 

the core routers. 

4. A command to configure the core routers (egress 

interfaces) will be issued from the GUI running on the 

CNQF management station. This will invoke the remote 

RC instance to configure the core routers with the TC 

command: 

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 

match ip tos 0xb8 0xfc  flow id 1:1 

Note that these configurations could be conducted 

dynamically by specifying adaptive policies that could 

autonomously change the configurations to suit different 

contexts or network conditions.  But for the purpose of our 

validation tests, traffic from edge networks connected to the 

testbed will be observed using the CNQF NetMon entities and a 

comparison will be made between scenarios where the above 

policies are disabled and where they have been applied 

according to the steps outlined previously. 

5.2 VALIDATION TESTS 

The policies enabled within the CNQF in the previous 

section allow packets from a particular edge network to get 

DiffServ EF priority treatment by tagging the packets with EF 

DSCP. Expectedly, without these polices enabled, the tagged 

traffic from that particular edge network will have to compete 

with untagged flows from the other edge networks for resources. 

Fig.4 shows the aggregate traffic from all the connected edge 

networks captured using the NetMon passive measurement 

mechanism built with SNMP4j. The figure depicts the temporal 

variation in bandwidth (link) utilization on the egress interface 

of the ingress edge router A (see Fig.3). Note that the total link 

capacity between edge router A and the core router B is 1Gps.  

The flows from the edge networks have been configured to 

arrive at the ingress edge router A with exponentially distributed 

inter-arrival times using the open source Ntools traffic generator. 

After an exponentially distributed period, each arriving flow is 

terminated. During this time the tagged flow from the edge 

network is observed at both ingress and egress routers using the 

installed CNQF NetMon instances to determine the effect of 

configuration policies on the flow. Fig.4 shows that the 

aggregate traffic at router A peaks at around 600 Mbps, while at 

around time 810s from the start of the experiment, the last 

arriving flow has been terminated. 

5.2.1 Validation Tests Without CNQF Configuration: 

During the first experimental scenario (where the CNQF 

QoS policies were not applied) the aggregate traffic as observed 

from Fig.4 was applied to the testbed. At the same time, we 

observe that 1 Mbps flow from the 192.168.20.x/24 edge 

network captured at the ingress of the router A depicted in Fig.5 

showing a consistent pattern. Simultaneously, the NetMon 

instance at the egress edge router where the link capacity 

(between router C and router B) is 100 Mbps shows considerable 

degradation of the flow QoS as a result of congestion within the 

edge-to-edge link from router A to B (Fig.6). The congestion 

phenomenon occurs when the aggregate traffic (Fig.4) leaving 

the egress interface of the ingress edge router A approaches and 

exceeds the bottleneck edge-to-edge capacity of 100 Mbps. 

 

 

Fig.4. Aggregate traffic from all edge networks to the test bed 

ingress router observed from the CNQF NetMon tool (scenario1) 

 

 

Fig.5. Tagged 1 Mbps flow observed at the ingress router a 

using NetMon packet capture mechanism (scenario 1) 

 

 

Fig.6. Tagged 1 Mbps flow observed at the egress router B. 

Degradation occurs due to congestion as aggregate traffic causes 

edge-to-edge congestion (scenario 1) 
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Fig.7. Average end-to-end delay without CNQF configuration 

policies as observed by the CNQF NetMon active measurement 

tool (scenario 1) 

 

Fig.8. Packet loss rate without CNQF configuration policies as 

observed by the CNQF NetMon active measurement tool 

(scenario 1) 

Fig.7 shows the measurement of average end-to-end delay 

from the NetMon Bwping-based active measurement mechanism 

depicting up to 40 ms end-to-end average delay at the times the 

congestion situation occur. At the same time the packet loss rate 

(as seen by the NetMon Bwping-based active measurement) is 

depicted in Fig.8 to reach above 60% most times but peaking at 

100% on a few occasions thus confirming the occurrence of a 

congestion situation as a (result of the 100 Mbps egress 

bottleneck) between these times. Note that all the measurements 

depicted in Figs.4-9 were taken simultaneously. 

5.2.1 Validation Tests With CNQF Configuration: 

Using the previous scenario as baseline, another test was 

conducted after having configured the testbed nodes (Policy 

Enforcement Points) with the CNQF policies as outlined in 

section 5.1. The aim was to validate the operation of the 

ResConImpl and RB implementations as well as the inter-

operational functionality of the entities with the MMS NetMon 

as crucial building blocks of the CNQF framework.  

Figs.9-13 illustrate NetMon measurements taken 

simultaneously while conducting the test of the second scenario 

with CNQF enabled via the GUI tool in running on the 

management station (see Fig.3). Fig.9 again shows a similar 

aggregate background traffic pattern to the previous scenario 

(Fig.4) as captured from the ingress router A. At the same time 

the 1Mbps flow under observation at the egress router B shows 

much better resilience to congestion as seen from Fig.11 

compared to the previous scenario without CNQF control which 

resulted in the degradation observed in Fig.6.  

Figs.12 and 13 show the average end-to-end delay and the 

packet loss rate as obtained from the NetMon Bwping-based 

tool. This time the measurements are configured to estimate the 

metrics for the priority traffic (i.e. EF traffic) by marking the 

probe packets also with EF DSCP within its IP header. It can be 

seen that a consistent pattern of average end-to-end delay falling 

between 28 and 29 ms is observed compared to the values of 

around 40 ms observed without CNQF policies (Fig.7). Likewise 

Fig.13 depicts a much lower loss rate recorded compared to the 

situation in Fig.8. 

 

 
Fig.9. Aggregate traffic from all edge networks to the testbed 

ingress router observed from the CNQF NetMon tool (scenario2) 

 

 
Fig.10. 1 Mbps flow observed at the ingress router A using the 

NetMon packet capture mechanism (scenario 2) 

0

5

10

15

20

25

30

35

40

45

A
v

e
r
a

g
e
 d

e
la

y
 (

m
s)

Time (s)

Average edge-to-edge delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
a
c
k

e
t 

lo
ss

 r
a

te

Time (s)

Packet loss rate

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Aggregate traffic (Scenario 2)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

B
it

r
a

te
 (

b
p

s)

Time (s)

Tagged flow (source)

Time (s) 

A
v

er
a

g
e 

d
el

a
y

 (
m

s)
 

Time (s) 

P
a

ck
et

 l
o

ss
 r

a
te

 

Time (s) 

B
it

ra
te

 (
b

p
s)

 

Time (s) 

B
it

ra
te

 (
b

p
s)

 



ISSN: 2229-6948(ONLINE)                                  ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND 

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2  

337 

 

 

Fig.11. 1 Mbps tagged flow observed at the egress router B. 

Degradation is mitigated by CNQF policies even though there is 

congestion as aggregate background traffic changes with the 

pattern shown in Fig.9 (scenario 2) 

 

 

Fig.12. Average end-to-end delay with CNQF configuration 

policies as observed by the CNQF NetMon active measurement 

tool configured to measure EF traffic metrics (scenario 2) 

 

Fig.13. Packet loss rate with CNQF configuration policies as 

observed by the CNQF NetMon active measurement tool 

configured to measure EF traffic metrics (scenario 2) 

The results presented indicate the successful execution of the 

high-level RB policies operating within the CNQF management 

station. This in turn validates the correct operation of the 

interface mechanism implemented for RB to RC communication 

within the framework prototype. Those in Fig.s 10 to 13 are 

indicative of the successful policy-driven reconfiguration of the 

PEPs (i.e. Linux based routers) via the implemented RC 

elements of the prototype. Lastly, all the measurements depicted 

were captured by the implemented NetMon mechanisms. Hence, 

from our current investigation we can conclude that CNQF RMS 

and MMS elements implemented within the framework 

prototype as well as their interoperability have been validated to 

be operating as expected and in accordance with the policy 

framework architecture.  

6. SUMMARY AND FURTHER WORK 

CNQF is designed to provide an infrastructure for policy-

based management of converged networks through the various 

functional elements that make up its subsystems. Its design 

allows for closed-loop, scalable, and adaptive end-to-end QoS 

control in converged networks.  In this paper, we presented the 

implementation of a Java based prototype and evaluated its 

ability to facilitate policy-based QoS management when 

deployed on a Linux-based testbed.  The conducted tests validate 

the framework architecture as key functional elements 

implemented within the prototype interworked as expected. The 

CNQF test bed is currently under expansion to interconnect with 

the IU-ATC Theme 10 Mobile Network testbed located at 

University of Surrey and IIT Madras. When accomplished, it 

will allow CNQF to be deployed under a wider range of 

experimental scenarios.  
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