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Abstract 

The performance analysis of Hyperelliptic Curve Cryptosystems 

(HECC) over prime fields (Fp) of genus 5 and 6 are discussed in this 

paper. We have implemented a HECC system of genus 5 & 6 in a Intel 

Pentium III Celeron Processor @ 933 MHz speed with 256 MB RAM 

in Java 1.5. We have also compared their efficiency on the parameters 

of time taken for divisor generation, key generation, encryption and 

decryption. Our results demonstrate that the performance of higher 

genus HECC system gets degraded in terms of divisor generation, key 

generation, encryption and decryption process. 
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1. INTRODUCTION

In recent times, hyperelliptic curve based cryptographic 

systems are considered as an alternative to finite-field based 

Public Key Cryptosystems, such as RSA, ECC and El-Gamal 

which are susceptible to attacks [9] [1]. In this paper, we mainly 

deal with Hyperelliptic Curve Cryptosystems (HECC) over 

prime fields (Fp) of genus 5 and 6. We have implemented HECC 

for genus 5 and 6 and provide details of the performance 

analysis between genus 5 and 6. The implementation of HECC 

system of genus 2 and 4 and their performance analysis are 

discussed in [7]. The organization of the paper is as follows. In 

section 2, an overview of hyperelliptic curves is presented. In 

section 3, the algorithm for key generation, encryption and 

decryption are discussed. In section 4, the implementation 

details are provided. Section 5 highlights the various results. In 

section 6, we provide the analysis details of various hyperelliptic 

curve cryptosystems. The paper finally ends with conclusions. 

2. BASICS OF HYPERELLIPTIC CURVES

The general equation of a non-singular hyperelliptic curve C 

of genus g over a field Fk is defined by the following equation:  

C : v
2 + 

h(u)v = f(u), 

where h, f ε k[u], f is monic, and the degree of f = 2g + 1, degree 

of h ≤ g.  

Elliptic Curves are hyperelliptic curves of genus 1 and there 

exists hyperelliptic Curves whose range is from 2 to infinity. For 

hyperelliptic curves there is no natural group law on C, by which 

one can ”add” points like that is done in an elliptic curve. The 

reason is that the points on a hyperelliptic curve do not form a 

group. Hence, for hyperelliptic curves, a group law is defined via 

the Jacobian Variety of C over a field, which is a finite abelian 

group. The Jacobian of the hyperelliptic curve C is the quotient 

group J = D
0
/P, where D

0 
is the set of divisors of degree zero, 

and P is the set of divisors of rational functions. The equivalence 

classes of the Jacobian are each represented by a unique reduced 

divisor upon which one performs the group law. 

2.1 MUMFORD REPRESENTATION 

Let g be the genus of a hyperelliptic curve 

 C:y
2 
+ h(x)y = f(x) 

Each nontrivial divisor class over the field K can be 

represented via Mumford representation (u(x), v(x)), where u(x) 

and v(x), u, v ε K[x], are a unique pair of polynomials satisfying 

the constraints of  

• u is monic

• deg v < deg u ≤ g

• u | v
2 
+ vh - f

Various mathematical operations can be carried out on these 

hyperelliptic curves which are discussed in [2] [5] [6] [7] [11] 

[12] [13] [15]. 

2.2 DISCRETE LOGARITHM PROBLEM (DLP) 

BASED ON HYPERELLIPTIC CURVES 

The Hyperelliptic Curve DLP is defined as: 

“Let C be the hyperelliptic curve and let Fq be a finite field 

within C with q elements. Given two divisors D1 and D2 in the 

Jacobian, determine the integer m ε Z, such that D2 = mD1 “ 

2.3 HYPERELLIPTIC CURVE EQUATIONS FOR 

GENUS 5 AND 6 OVER PRIME FIELD FP 

The general equation format of a hyperelliptic curve defined 

over Fp is given in Table 1. 

The following are the hyperelliptic curves over prime fields 

we have considered for genus 5 & 6.  

For genus 5: 

y
2 
= x

11
+ x

5 
+ a0

For genus 6:  

y
2 
= x

13 
+ x

11 
+ x

3 
+ x 

Table.1. Hyperelliptic curves over Fp of various genus g 

Genus HC over Fp ,where p is prime 

5 
y

2 
= x

11 
+ f10x

10 
+ f9x

9 
+ f8x

8 
+ f7x

7
 +f6x

6 
+ f5x

5 
+

f4x
4 
+ f3x

3 
+ f2x

2
 + f1x

1 
+ f0

6 
y

2 
= x

13 
+ f12x

12 
+ f11x

11 
+f10x

10 
+ f9x

9 
+ f8x

8 
+ f7x

7

+f6x
6 
+ f5x

5 
+ f4x

4 
+ f3x

3 
+ f2x

2
 + f1x

1 
+ f0
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3. ALGORITHM FOR A HYPERELLIPTIC 

CURVE CRYPTOSYSTEM (HECC) 

The basis for a Hyperelliptic curve cryptosystem is the 

Discrete Logarithm problem. The following section describes 

the algorithm for Key generation process, Encryption and 

Decryption process [7] [8]. 

3.1 KEY GENERATION ALGORITHM 

Input: The public parameters are Hyperelliptic curve C, Prime p 

and Divisor D.  

Output: The Public key PA and Private key aA  

1. aA εR N [choose „a‟ at random in N]  

2. PA          [aA] D [The form of PA is (u(x), v(x))    

     representation]  

3. Return PA and aA  

For the random prime number generation in step 1, one can 

apply the Rabin-Miller Primality Test [14] or AKS algorithm 

[10]. 

3.2 ENCRYPTION/DECRYPTION ALGORITHM 

In this section, we describe the methodology for encryption 

and decryption. The message „m‟ that is to be sent will be 

encoded as a series of points represented as (u(x), v(x)). The 

encoded message is referred as Em. For the encryption and 

decryption process using HECC, we have adopted El-Gamal 

method [9] to design HEC-ElG Algorithm (HEC-ElGA). Details 

on HEC-ElGA method can be had from [8]. 

4. IMPLEMENTATION 

The Hyperelliptic curve cryptosystem for genus 5 & 6 was 

implemented in Java 1.5 and executed in Intel Pentium III 

Celeron Processor @ 933 MHz speed with 256 MB RAM.  The 

system was tested for the time taken for a) Divisor generation b) 

key generation c) encryption and d) decryption processes. 

5. RESULTS 

The followings are the results of the HECC system.      

5.1 HYPERELLIPTIC CURVE CRYPTOSYSTEM 

FOR GENUS 5 OVER PRIME FIELD Fp 

HECC for Genus 5 over Prime Field Fp 

HECC 

Equation 

C:v^2=u^11+u^5+1 

Prime: 15500223400233542322271631 

Time taken for curve generation : 10ms 

Divisor 

Gen. 

div (u^5+ 

5308937822212580211940952952221399u

^4+13461271900394921904215994189594

11u^3+79973794865564793510043288445

52830u^2+19697313536376155931263215

88922057u+8611409421799544821211754

218774437, 

3221454815665988134562034534382230u

^4+94640114803333220790061491634996

22u^3+71765570338293678637596675239

55107u^2+61458862045458440477296925

41508387u+4971733125487588920481463

09121910) 
 

Time (in ms)taken for divisor generation: 

1221 
Key 

Generation 

Time taken for key generation: 8505 

Milliseconds 

Encryption 

(Size of the 

txt file : 301 

bytes) 

Time (Milliseconds): 8622 

Decryption Time (Milliseconds): 10700 

 

5.2 HYPERELLIPTIC CURVE CRYPTOSYSTEM 

FOR GENUS 6 OVER PRIME FIELD Fp 

HECC for Genus 6 over Prime Field Fp 

HECC 

Equation 

C: v^2 = u^13 + u^11 + u^3 + u  

Prime: 98335577979347609283016230317 

Time taken for curve generation : 11.4 

Milliseconds 

Divisor 

Generation 

D: div (u^6+ 

13407833383145290852922388091639960u^5+ 

3260659385839888573682800042071221u^4+ 

5563665063475091766624628547986839u^3+ 

1459752873645887696442536699738782u^2+ 

1210127098136011260813609161709017u+ 

1178567850751132390393066118803542, 

8987907561561194725130030074741664u^5+ 

12950415090557298829604230510121215u^4+ 

11815991969843890827581574345701176u^3+ 

7362575976762479111266276235721527u^2+ 

5672776945517278109053510340584013u+ 

7511500399756547945212350004129909) 
 

Time taken for divisor generation: 1871 

Milliseconds 

Key 

Generation 

Time taken for  

key generation : 9021 Milliseconds 

Encryption 
(Size of the txt file : 301) bytes) 

Time : 9322 Milliseconds 

Decryption Time : 11595 Milliseconds 

6. PERFORMANCE ANALYSIS OF THE HECC 

The performance of the HECC for genus 5 and genus 6 was 

analyzed based on the length of the prime generated and the time 

taken for the various processes. The size of the input text file 

used for the encryption process is 500 bytes. Table.2 shows the 

time (in Milliseconds) taken for the various processes. 
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Table.2. Performance Analysis of the HECC for Genus 5 and 6 

(Time in milliseconds) 

 Length of prime = 35 Length of prime = 55 

G5 G6 G5 G6 

Divisor 

Generation 
1221 1871 1771 2313 

Key 

Generation 
8505 9021 8860 11743 

Encryption 8622 9322 8997 12109 

Decryption 10700 11595 11100 15012 

The following graph displays the performance analysis of 

HECC for both genus 5 and genus 6. 

 

Fig.1. Performance analysis of HECC of Genus 5 & 6 

7. CONCLUSION 

In this work, we have implemented a hyperelliptic curve 

cryptosystem of genus 5 & genus 6 and compared their 

performance in terms of divisor generation, key generation, and 

encryption and decryption process. The entire work was coded 

and implemented in Java 1.5 and executed in Intel Pentium III 

Celeron Processor @ 933 MHz speed with 256 MB RAM. 

Analysing the results, we found that the performance of higher 

genus HECC gets degraded in terms of divisor generation, key 

generation, and encryption and decryption process. Moreover, 

there exists sub exponential discrete log algorithm on higher 

genus (g > 2) hyperelliptic curves which reduces the security 

level of the cryptosystem [4] and also the HECC system of 

higher genus are slower than HECC system of genus 2 [3] [7]. 

Thus, the hyperelliptic curves of genus 2 are the best suitable 

curves for the cryptographic purpose. 
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