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Abstract 

Reduction of sidelobe level in concentric ring arrays results in wide 

first null beamwidth (FNBW). Theauthors propose a pattern synthesis 

method based on modified Particle Swarm Optimization (PSO) 

algorithm and Differential Evolution (DE) algorithm to reduce 

sidelobe level while keeping the first null beamwidth (FNBW) fixed or 

variable. This is achieved by optimizing both ring spacing and number 

of elements in each ring of a concentric circular ring array of 

uniformly excited isotropic antennas. The first null beamwidth is 

attempted to be made equal to or less than that of a uniformly excited 

and 0.5 λ spaced concentric circular ring array of same number of 

elements and same number of rings. The comparative performance of 

modified Particle Swarm Optimization (PSO) algorithm and 

Differential Evolution (DE) algorithms based on this particular 

problem in terms of FNBW, sidelobe level and computational time is 

also studied. 
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1. INTRODUCTION

A circular ring array also known as concentric circular array 

(CCA) is a planar array that consists of one or more concentric 

rings, each having equally spaced array elements on its 

circumference. Its main attraction is the cylindrical symmetry of 

its radiation pattern and compact structure. However, in its 

simple form the array suffers from high side lobe problem. One 

of the important configurations regarding CCA is uniform 

concentric circular array (UCCA) where interelement spacing in 

each individual ring is kept almost half of the wavelength and all 

the elements in the array are uniformly excited. Generally low 

sidelobes in the array factor are obtained through optimum 

amplitude weights of the signals at each array element.  

The radiation pattern function of a concentric ring array has 

been expressed by Stearns and Stewart [1] as a truncated 

Fourier-Bessel series and the non-uniform distribution of the 

rings has been approximated to a smaller number of equally 

spaced ones. N. Goto and D. K Cheng showed that for a Taylor 

weighted ring array the maximum allowable inter-element 

spacing should be about four-tenths of a wavelength, if high 

sidelobes are to be avoided [2]. 

L.Biller and G. Friedman used steepest descent iterative 

process to find out element weights and ring spacing to get lower 

side lobe levels and control over beam width [3]. D. Huebner 

reduced the sidelobe levels for small concentric ring array by 

adjusting the ring radii using optimization technique [4]. B. P. 

Kumar and G. R. Branner also proposed optimum ring radii for 

getting lower sidelobes [5].  M. Dessouky, H. Sharshar and Y. 

Albagory showed that the existence of central element in 

concentric circular array of smaller innermost ring reduced the 

sidelobe levels significantly while minor increase in the 

beamwidth [6]. Side lobe levels can be reduced by thinning the 

array [7-8]. The array is thinned by turning off selected elements 

from the uniform array. Sidelobe level can also be reduced by 

optimizing both radii of the rings and the number of elements in 

each ring of a concentric ring array. 

Reduction in the sidelobe level also increases first null beam 

width (FNBW) significantly. In this paper we have reduced the 

sidelobe level significantly, keeping FNBW fixed by optimizing 

both ring spacing and number of elements in each ring. Here 

modified Particle Swarm Optimization (PSO) algorithm and 

Differential Evolution (DE) algorithm have been successfully 

applied as an evolutionary algorithm [9-10] to find out those 

optimum values. Keeping the fitness function same, the 

comparative performance of modified PSO [11-13] and DE [14-

16] for this particular problem is being studied.

2. THEORETICAL FORMULATION

The far field pattern of a concentric circular planar array 

shown in Fig.1 on the x – y plane with central element feeding 

can be defined as [6-7]: 

1 1

1
m

m mn m

NM

m

m n

j[ k  r sin cos( ) ]
E( , ) I e θ ϕ ϕ φθ ϕ

= =

− +
= + ∑ ∑ (1) 

Normalized absolute power pattern, P(θ,ϕ) in dB can be 

expressed as follows: 
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Where M = Number of concentric rings, Nm = Number of 

isotropic elements in each ring, Im = excitation amplitude of 

elements on m-th circular ring, dm =  interelement arc spacing of 

m-th circle, rm = Nmdm/2π,  Radious of the m
th

 ring, ϕmn=2nπ/Nm,

angular position of mn-th element with 1≤ n ≤ Nm, θ, ϕ = polar, 

azimuth angle, λ=wave length, k = wave number = 2π/λ, 

j=complex number, φm = excitation phase of elements on m-th 

ring. All the elements have same excitation phase of zero degree. 
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Fig.1 Concentric ring arrays of isotropic antennas in XY plane 

3. METHOD OF SIDELOBE REDUCTION

Sidelobe level of a uniform concentric ring array can be 

reduced by optimizing both the ring spacing non-uniformly and 

the number of elements in each ring. Initially it is assumed that 

all the elements are uniformly excited, interelement spacing is 

0.5λ and the ring spacing rm = mλ/2. The number of elements in 

m-th ring of a concentric ring array can be expressed as: 

2 m
m

m

r
N

d

π
= (3) 

Since the number of elements should be an integer so only 

the computed integer values of Eq. (3) are taken. The radii of the 

rings are varied by first assuming that all the rings are separated 

by a minimum distance of 0.5λ. After that, a non-uniform 

separation is included so that the new radius rm becomes: 

1
2

m m mr r
λ

−= + + ∆ , (where 0 m λ≤ ∆ ≤ ) (4) 

The radii of the rings and the number of elements in each 

ring are varied such that the interelement spacing dm of m-th 

circle lied between 0.5λ ≤ dm ≤ λ. 

The optimum values of mr  and mN  are individually

computed by first using modified Particle Swarm Optimization 

algorithm (PSO) and then by Differential Evolution (DE) 

algorithm, while keeping the fitness function same for both the 

cases.  

The fitness functions for this problem are: 

( )2
1 21 o dFitness k max SLL k FNBW FNBW H(T )= + −  (5) 

2Fitness max SLL= (6) 

Where , max SLL is the value of maximum side lobe level, 

FNBWo  and  FNBWd are the obtained and desired values of first 

null beam width respectively,  k1, k2 are weighting coefficients to 

control the relative importance given to each term of Eq. (5) and 

H(T) is a Heaviside step function is defined as: 
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Eq. (6) is when a fixed value of FNBW was not taken into 

consideration. Eq. (5) and (6) are minimized individually by 

modified PSO and DE for optimal synthesis of array. 

4. MODIFIED PARTICLE SWARM 

OPTIMIZATION ALGORITHM 

Particle Swarm Optimization (PSO) is a population based 

stochastic optimization tool inspired by social behavior of bird 

flock, fish school etc. as developed by Kennedy and Eberhart in 

1995 [11]. In PSO, a member in the swarm, called a particle, 

represents a potential solution, which is a point in the search 

space. The global optimum is regarded as the location of food. 

Each particle has a fitness value and a velocity to adjust its 

flying direction according to the best experiences of the swarm 

in search for the global optimum in the D-dimensional solution 

space. The steps involved in modified PSO are given below: 

Step 1: Initialize positions and associate velocity to all particles 

(potential solutions) in the population randomly in the 

D-dimension space. 

Step 2: Evaluate the fitness value of all particles. 

Step 3: Compare the personal best (pbest) of every particle with 

its current fitness value. If the current fitness value is 

better, then assign the current fitness value to pbest and 

assign the current coordinates to pbest coordinates. 

Step 4: Determine the current best fitness value in the whole 

population and its coordinates. If the current best fitness 

value is better than global best (gbest), then assign the 

current best fitnessvalue to gbest and assign the current 

coordinates to gbest coordinates. 

Step 5: Update velocity (Vid) and position (Xid) of the d-th 

dimension of the i-th particle using the following 

equations: 
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c1(t), c2(t)  =  time-varying acceleration coefficients with c1(t) 

decreasing linearly from 2.5 to 0.5 and c2(t) increasing linearly 

from 0.5 to 2.5 over the full range of the search , w(t)=time-

varying inertia weight changing randomly between U(0.4,0.9) 

with iterations, rand1, rand2 are uniform random numbers 

between 0 and 1, having different values in different dimension, 

t is the current generation number.  

Eq. (10) has been introduced to clamp the velocity along 

each dimension to uniformly distributed random value between 

d
minV and d

maxV  if they try to cross the desired domain of interest.
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These clipping techniques are sometimes necessary to prevent 

particles from explosion. The maximum velocity is set to the 

upper limit of the dynamic range of the search d d
max max(V X )=

and the minimum velocity d
min(V ) is set to d

min( X ) . 

However, position-clipping technique is avoided in modified 

PSO algorithm. Moreover, the fitness function evaluations of 

errant particles (positions outside the domain of interest) are 

skipped to improve the speed of the algorithm 

Step 6: Repeat steps 2-5 until a stop criterion is satisfied or a 

pre-specified number of iteration is completed, usually 

when there is no further update of best fitness value. 

In this problem number of particles is taken 40 and the 

algorithm is run for 800 generations. The maximum number of 

generation is kept at a value where there is no further update of 

global best solutions 

5. DIFFERENTIAL EVOLUTION ALGORITHM 

Differential Evolution is a simple evolutionary algorithm 

introduced by Storn and Price [14-16]. Similar to GA[17], DE is 

also an algorithm based on population. DE algorithm is a 

stochastic optimization method minimizing an objective function 

that can model the problem’s objectives while incorporating 

constraints. The algorithm mainly has three advantages; finding 

the true global minima regardless of the initial parameter value, 

fast convergence and using a few control parameters [14-16]. 

DE can be described as below [14-16]:  

Step 1: Initialization:  

The generation number is set to t=0 and a population of NP 

individuals are randomly initialized in the D-dimensional search 

space as, ( ) ( ){ }
1 NPtP  X t ,  , X t= ……

r r
, where 

1 2i i , i, i ,DX ( t ) [ x ( t ), x ( t ),..., x ( t )]=
r

 and each individuals are 

uniformly distributed in domain
min max

[ X , X ]
r r

. 

Step 2: Evaluate the fitness: 

Evaluate the fitness of each individual at current generation. 

Step 3: Mutation: 

Create donor vector 
i

V (t )
r

corresponding to the i-th target 

vector iX ( t )
r

 for all the individuals at current generation using 

any one of the DE mutation scheme [14-16]. 

In this problem we have used the mutation strategy known as 

DE/best/1, expressed as: 

1 2
i i

i best r r
V ( t ) X ( t ) F .( X ( t ) X ( t ))= + −
r r r r

 for i=1,2,...,NP 

where, 
best

X
r

is the best vector of the current population, 
1
ir

X
r

and 
2
ir

X
r

are randomly picked up vectors from the current 

generations, F is the scale factor, 0 1F ( , )∈ +  , a positive real 

number that controls the rate at which the population evolves. 

Step 4: Crossover: 

Use any one of the crossover scheme in DE [14-16] to form 

the trial vector
i

U ( t )
r

. It is achieved by exchanging the 

components of the donor vector 
i

V ( t )
r

 and the target vector 

iX ( t )
r

 with a crossover probability of [ ]( )0 1r rC C ,∈ , for all 

the individuals at current generation. 

Step 5: Selection: 

Select the best individuals for the next generation as follows: 

1 1 2i i i
i

i i i

U ( t ),if , f (U ( t )) f ( X ( t ))
X ( t ) , for ,i , ,...,NP

X ( t ),if , f (U ( t )) f ( X ( t ))
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r r r
r

r r r
 

Compute ( )GbestX t
r

at current generation as follows: 

From NP individuals of 1iX ( t )+
r

, find out the individual for 

which ( ( 1)), , 1, 2,...,if X t for i NP+ = , becomes minimum (for 

minimization problem) and assign that vector to ( )GbestX t
r

. 

Here, f ( X )
r

 is the function to be minimized. Since the 

selection process employs a binary decision the population size 

remains fixed throughout generations. 

Step 6: 

Increase the iteration count ‘t’ by one, and repeat steps 2-5 

until the termination condition is satisfied. Return ( )GbestX t
r

as 

the result. 

The termination condition can be defined: 

i. When a fixed number of iteration tmax, with a suitably 

large value of tmax , depending upon the complexity of 

the objective function  is reached. 

ii. When best fitness of the population does not change 

appreciably over successive iterations. 

Mutation demarcates one DE scheme from another. Each 

mutation strategy combines with either ‘exponential’ or 

‘binomial’ type crossover and produce new working strategy. 

There are in total ten different working strategies of DE as 

suggested by Storn and Price [14-16].  

In this problem we have used DE/best/1/exp strategy along 

with number of population (NP) =40 and crossover rate (Cr) = 

0.7 and the termination condition was defined as tmax=800 

6. SIMULATION RESULTS 

For a nine ring concentric ring array of isotropic antennas [7] 

the initial radius of the rings are 
2m

mr λ=  (m-th ring) and the 

interelement spacing in each ring is kept at
2

λ . For this 

arrangement the total number of isotropic elements is 279. 

Uniform excitation and constant phase angle between the 

elements gives sidelobe level -17.4 dB [7] and FNBW 14.8 

degree. The problem is to find out the optimum set of ring radii 

and the number of elements in each individual ring that would 

generate a pencil beam in the XZ plane keeping FNBW below or 

equal to that of a nine ring uniform concentric circular ring 

array. All these simulations are performed using a PC having 

Intel core2 processor with 3 GHz clock frequency, 2 GB of 

RAM and Microsoft windows XP 32 bit operating system. Table 

1 shows that using modified PSO we were able to reduce the 

sidelobe level below  -29 dB keeping FNBW fixed and reduce it 

below -31 dB without fixing FNBW . Fig.2 and Fig.3 shows the 
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normalized power patterns of the optimized arrays in dB along 

with initial 9 ring uniform concentric ring array for fixed and 

variable FNBW cases computed using PSO. DE reduces the 

sidelobe level below -32 dB for fixed FNBW and below -33 dB 

without fixing FNBW. However DE requires slightly greater 

amount of time to give optimum result. Fig.4 and Fig.5 shows 

the normalized power patterns of the optimized arrays in dB 

along with initial 9 ring uniform concentric ring array for fixed 

and variable FNBW cases computed using DE.  

Table 2 and Table 3 shows the rings radii and the number of 

elements in each ring for the optimized arrays of fixed and 

variable FNBW computed using modified PSO and DE.  From 

Table 2, we can find the total number of elements in the 

optimized array including the central element. Using modified 

PSO for fixed FNBW case it is 242 or 86.74% of the initial 9-

ring uniform concentric ring array and for variable FNBW case 

it is 238 or 85.30% of the initial 9-ring uniform concentric ring 

array. From Table 3, it can be seen that the total number of 

isotropic elements in the optimized array including central 

element, using DE for fixed FNBW case is 225 or 80.64% of the 

initial 9-ring uniform concentric ring array and for variable 

FNBW it is 198 or 70.97% of the initial 9-ring uniform 

concentric ring array. The maximum radius of the optimized 

array computed using DE for both the cases is lesser than that of 

the optimized arrays computed using modified PSO. 

Table.1. Comparative performance of modified PSO and DE 

based on the fitness function in Eq. (5) and (6) 

 

 

 

Parameters 

 

Modified PSO 
 

DE 

Opt. 

Array 

(fixed 

FNBW) 

Opt. 

Array 

(variable 

FNBW) 

Opt. 

Array 

(fixed 

FNBW) 

Opt. 

Array 

(variable 

FNBW) 

Sidelobe 

level (dB) 
-29.71 -31.82 -32.05 -33.24 

FNBW 

(degree) 
13.1 15.0 14.8 16.9 

Computation 

time 

(min:sec) 

66:26 51:28 80:67 78:92 

Fitness 

Value 
-29.71 -31.82 -32.05 -33.24 

Table.2. Ring radii and number of elements in each ring 

computed by modified Particle Swarm Optimization (PSO) 

algorithm 

Ring 

Number 

Parameters for 

fixed FNBW 

Parameters for 

variable  FNBW 

mr ( )λ  mN  mr ( )λ  mN  

1 0.747 9 0.503 6 

2 1.273 16 1.044 13 

3 1.905 14 1.547 19 

4 2.435 26 2.104 24 

5 3.078 33 2.619 25 

6 3.755 31 3.244 38 

7 4.599 34 4.006 39 

8 5.399 36 4.919 35 

9 6.338 42 5.744 38 

Table.3. Ring radii and number of elements in each ring 

computed by Differential Evolution (DE) algorithm 

Ring 

Number 

Parameters for 

fixed FNBW 

Parameters for 

variable  FNBW 

mr ( )λ  mN  mr ( )λ  mN  

1 0.556 6 0.501 6 

2 1.056 12 1.002 12 

3 1.559 18 1.503 18 

4 2.182 27 2.016 21 

5 2.809 25 2.527 26 

6 3.309 30 3.064 23 

7 4.045 34 3.588 28 

8 4.861 33 4.309 29 

9 5.810 39 5.219 34 

 

Fig.2. Normalized absolute power patterns in dB for uniform 

concentric ring array and optimized array with fixed FNBW 

using modified PSO 

 

Fig.3. Normalized absolute power patterns in dB for uniform 

concentric ring array and optimized array without fixing FNBW 

using modified PSO 
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Fig.4. Normalized absolute power patterns in dB for uniform 

Concentric ring array and optimized array with fixed FNBW 

using DE 

 

Fig.5. Normalized absolute power patterns in dB for uniform 

concentric ring array and optimized array without fixed FNBW 

using DE 

7. CONCLUSIONS 

It has been shown that by optimizing radii of the rings and 

the number of elements in each individual ring it is possible to 

reduce the sidelobe level of a concentric ring array significantly. 

Here modified Particle Swarm Optimization algorithm and 

Differential Evolution (DE) algorithm have been effectively 

used as a global optimization algorithm to find out optimum set 

of mr  and mN . From the result it can be inferred that the 

performance of Differential evolution (DE) algorithm in this 

problem is better than that of modified Particle Swarm 

Optimization (PSO) algorithm in terms of sidelobe level, number 

of elements in the array, and compact structure although DE 

requires slightly greater amounts of time to give optimum 

results. Here both the algorithms satisfy the desired array 

characteristics and give satisfactory results.   
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