
ISSN: 2229-6948(ONLINE)

DOI: 10.21917/ijct.2012.0093
 ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2012, VOLUME: 03, ISSUE: 04

651

DMAC-AN INTEGRATED ENCRYPTION SCHEME WITH RSA FOR AC TO

OBSTRUCT INFERENCE ATTACKS

R. Jeeva
Department of Computer Science and Engineering, Joe Suresh Engineering College, India

E-mail: r.jeevanatham@gmail.com

Abstract

The proposal of indistinguishable encryption in Randomized

Arithmetic Coding(RAC) doesn’t make the system efficient because it

was not encrypting the messages it sends. It recomputes the cipher

form of every messages it sends that increases not only the

computational cost but also increases the response time.Floating point

representation in cipher increases the difficulty in decryption side

because of loss in precison.RAC doesn’t handle the inference attacks

like Man-in-Middle attack,Third party attack etc. In our system,

Dynamic Matrix Arithmetic Coding(DMAC) using dynamic session

matrix to encrypt the messages. The size of the matrix is deduced from

the session key that contains ID of end users which proves the server

authentication.Nonce values is represented as the public key of the

opponents encrypted by the session key will be exchanged between the

end users to provide mutual authentication. If the adversary try to

compromise either server or end users,the other system won’t respond

and the intrusion will be easily detected. we have increased the

hacking complexity of AC by integrating with RSA upto 99%.

Keywords:

RAC, DMAC, Hacking Complexity, Third Party Attack, Inference

Attack

1. INTRODUCTION

 Arithmetic coding - The source symbols are encoded

numerically [1] [6]. Each symbol does not necessarily translate

into the same indexed code each time it is encoded. An input

source string is represented by an interval of real numbers

between 0 and 1. The range of the interval is need by two values,

high and low, which are equal to 1 and 0 initially. The interval is

successively subdivided as each new source symbol is read.

Highly probable symbols (with respect to the model, as distinct

from the more probable symbols in the input) reduce the interval

by a smaller amount than less probable symbols. The precision

with which to represent the interval increases in accordance with

the length of the input string.

Key Based Interval Splitting-a modification of arithmetic

coding that uses key-based interval splitting to simultaneously

enable data compression and encryption [2][7]. We have shown

that even when intervals in an arithmetic coder are split, the code

length increases relative to traditional arithmetic coding is

bounded to less than 1 bit per N-symbol sequence, and in

practice,the increase is often approximately 0.5 bits per -symbol

sequence. In percentage terms, this efficiency penalty becomes

negligibly small as N increases. The splitting produces

encryption, the level of which is a function of the attributes of

the key and the encoded sequence. While we have focused on

the static binary case for simplicity, the methods presented here

can also be applied to M-ary and/or adaptive arithmetic coding.

Secure Arithmetic Coding-An arithmetic coder in which the

intervals associated with each symbol combination are split in

accordance with a key, and in which permutations are applied

both to input symbol sequence and to the output binary

sequence, has been presented [3][9]. The system offers both

compression and security, and thwarts all known attacks aimed

at obtaining information about the input or output permutation or

the interval splitting keys. For each encoded symbol, a pair of

intervals is split, and this split can occur in parallel. So the

throughput can be identical to that of a traditional arithmetic

coder. The permutations add negligible complexity. The security

problem of Secure Arithmetic Coding (SAC) under an adaptive

chosen-cipher text attack is it can recover the key vectors used in

the codeword permutation step with complexity Ο (N), where N

is the symbol sequence length [4]. This indicates that the SAC is

not suitable for those applications where the attacker can have

access to the decoder. Furthermore, we have discussed an

improved version of the SAC such that it can resist the adaptive

chosen-cipher text attack and can be conveniently incorporated

with the context-based coding.

Modifications of arithmetic coding (AC) have been proposed

to improve the security of traditional AC [8] [10]. Two main

modifications to AC are randomized AC (RAC) and AC with

key-based interval splitting (KSAC). Chosen-plaintext attacks

have been proposed for these two methods when the same key is

used to encrypt different messages [9]. The security of AC in is

based on the inability of the adversary to distinguish between the

encryption of one plaintext from the encryption of another. By

this definition, we prove that RAC is insecure even if a new

random key is used to compress every message. The adversary

can only eavesdrop on the cipher texts and cannot request

encryptions of chosen-plaintexts. The method of first-compress-

then-encrypt, where the encryption is performed by a bitwise xor

of the compressed output with a pseudorandom bit sequence, is

provably secure with respect to chosen-plaintext attacks[13].

In our system, we increse the security of arithmetic coding

by merging the DMAC, dynamic sized session matrix with RSA

algorithm. We handle the communication line attacks like Man-

in-Middle attack, Third party attack etc by introducing nonce

values between the end users that provides mutual authentication

and check the server authentication using the public key of end

users.

2. EXISTING SYSTEM

In this scheme (RAC) [4] that is chosen-plaintext secure, this

is a stronger notion of security than having indistinguishable

encryptions in the presence of an eavesdropper. To understand

this scheme, it looks at AC as defined in, where the interval [0,

1) is split in two ways as shown in Fig.1. The traditional way of

partitioning the interval [0, 1) is according to the probabilities

(pA, pB) and the subintervals are labeled with symbols A and B.

R. JEEVA: DMAC-AN INTEGRATED ENCRYPTION SCHEME WITH RSA FOR AC TO OBSTRUCT INFERENCE ATTACKS

652

Another way to partition the interval [0, 1) is split into

subintervals of equal lengths and labeled 0 and 1. Partitioning

once results in two subintervals [0, 0.5) (labeled 0) and [0.5, 1)

(labeled 1). Partitioning once more results in each subinterval

being partitioned into two intervals of equal length. Thus the

interval [0, 1) is partitioned into the following four subintervals

of equal length: [0, 0.25) (labeled 00), [0.25, 0.5) (labeled 01),

[0.5, 0.75) (labeled 10), and [0.75, 1) (labeled 11). Therefore,

doing the partitioning n times results in the interval [0, 1) being

partitioned into 2
n
 subintervals each labeled with a distinct -bit

binary number. The i
th

 of these subintervals is referred to as Ei(n)

and label Ei(n) as the n-bit binary expansion of i, that is the label

for that subinterval (i = 0,1,….2
n-1

). A string S that needs to be

compressed is first converted into interval I(S) using the

traditional AC method. Then the smallest n such that there exists

Ei(n) and that is completely within I(S) is found (or Ei(n) subset

of I(S)). The n-bit label on this Ei(n) is the output of the

compression algorithm. The bits of the output can be put out as

the symbols S of are being read[11].

Let S = ABBAB and pA = 2/3 = 0.67 and pB = 1/3 = 0.33.

Using traditional AC we find that after A is read, I (A) = [0.33,

1). If there exists an n and I such that I (A) is completely within

Ei(n). E0(n) = [0, 0.5) and E1(n) = [0.5, 1). Since I(AB) is not

within E0(n) or E1(n), no output can be put out yet[17]. The next

symbol B is read and I (AB) = [0.33,0.55). Again, since I(AB) is

not within E0(n) or E1(n), no output can be put out yet. The third

symbol B is read and I(ABB) = [0.33,0.4026). Now I(ABB) is

within E1(1) = [0.25,0.5) with label 01. Therefore the output so

far is 01. This is true because any interval Ei(n) that is within I

(ABB) is a subinterval of E1(2). Note that I (ABBA) is not

within any of these intervals so the next symbol B is read. I

(ABBAB) = [0.354, 0.37). I(ABBAB) is within E2(3) =

[0.25,.375) and the output is the 3-bit binary value of 2 which is

010[11]. Ei(3), i = 0,…..7, consists of the intervals

[0,1/23),[1/23,2/23),,,,,[1/23,1)=[0,0.125),[0.125,0.25),[0.25,0.3

75),[0.375,0.5),[0.5,0.625),[0.625,0.75),[0.75,0.875),[0.75,1).Sin

ce the bits 01have already had been output, we now output the

third bit 0. However, I (ABBAB) is within a smaller interval,

E5(4) = [5/24, 6/24) = [0.3125, .375). Since the 4-bit binary

expansion of 5=0101 and the most significant three bits 010

have already been output we now output the next bit 1. Since the

last symbol has already been read, we now look for i and

smallest n such that Ei(n) is completely within I(ABBAB).

Fig.1. Two ways to partition the range [0, 1)

It finds that and i = 23 and n = 6. Thus, Ei(n) = E23(6) =

[23/2
6
, 24/2

6
) = [0.3596, 0.375) is completely within I(ABBAB).

Note that this is the largest interval Ei(n) that is completely

within I(ABBAB). Since the 6-bit binary expansion of 23 =

010111 and 0101 has already been output, we output the

remaining bits 11. Thus the final output is 010111 and the

decimal value of 0.010111 is 0.359375 and this is within

I(ABBAB) as expected. Note that maintaining Ei(n) can be done

incrementally with minimal overhead[11].

Fig.2. I (ABB) is a subinterval of E1(2)

The above procedure as in Fig.2 was converted into an

encryption by simply permuting the labels for each Ei(n). This

can be done by doing a bitwise XOR of each label with a

pseudorandom bit sequence of length n. Consider the labels of

Ei(2) , which are 00, 01, 10, and 11. Doing a bitwise XOR with a

2-bit pseudorandom bit sequence, say 10, with each of the Ei(2)

results in E1(2)=10, E1(2)=11, E2(2)=00, E3(2)=01[12]. This

system is simply AC followed by XORing with a pseudorandom

bit sequence using randomized counter mode of operation. It

looks at AC in a different way. The interval [0, 1) is split in two

ways: 1) Split according to the probabilities pA and pB , and 2)

split into intervals of equal length. In RAC, randomization is

done using the first way of splitting [0, 1), while in our method

randomization is done using the second way of splitting [0, 1).

Since the randomization or permutation of the intervals is

performed on intervals of equal length, unlike that in RAC, the

new scheme is secure.

3. PROPOSED SYSTEM

3.1 SYSTEM ARCHITECTURE

In our system in Fig.3, the security is provided in two ways:

one by the server; other by the end user itself. When the user

login the system, not only the status of the system is sent to the

server, but also the public key of the user. During login, the end

user generates two random prime numbers that in turn generates

private and public key of the user. When the user chooses the

recipient, the server checks the status of the recipient. If it is in

Active state, it generates a session key that contains the details

of sender ID, receiver ID, sender public key and recipient public

key. When the sender and receiver receive this session key, they

can verify the received public key with their own public key that

provides authentication between the server and end users. The

sender uses the receiver’s public key to encrypt the entries in the

session matrix. Then the nonce values, public key of the end

users encrypted with the received session key provided by the

server will be exchanged between the end users. The public key

of the receiver is encrypted with the session key sent to the

recipient by the sender. The receiver verifies its own public key

and in turn sends the sender’s public key and the sum of sender

and receiver public key encrypted with session key send to the

sender. This process provides the mutual authentication between

the end users.

.

.

.

.

.

.

.

.

.

.

.

. 1 0
E3(2) E2(2) E1(2) E0(2)

0.33
..

0.4026

ABB

0 1

0.25 0.5 0.75 00 01 10 11

0 1

Traditional partitions

Equal length partitions

0 1 ps B A

0 1 0.25 0.5 0.75 00 01 10 11

0 1
Equal length partitions

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2012, VOLUME: 03, ISSUE: 04

653

Fig.3. Architecture of DMAC

3.2 MATRIX SIZE DETERMINATION

After getting the session key from the server, it undergoes

the sum of the summation of all the ASCII Codes in the message

and its corresponding base value as in Fig.4. The output of the

step-1 is used in two eays: one to generate a row value and the

other to generate the column value. In row compuation side, the

sum of the product of each digit of the ouput value in step-1 and

the place value of each digit. The ouput value from step-1 taken

modulo with the ouput value from step-3 to give the Row Size.In

column compuation side, the sum of the product of each digit of

the ouput value in step-1 and the reverse place value of each

digit. The ouput value from step-1 is taken modulo with the

ouput value from step-5 to give the Column Size.

Fig.4. Size Deduction

3.3 MATRIX ENCRYPTION USING RSA

After computing the row and column size, we formulate the

dynamic session matrix with the above computed value. The

entry of the matrix is filled with the sequence of numbers

starting from 1, continues till it reach the entry for a[n][n] as

shown in Fig.5. As per the above architecture, the sender holds

the public key of the receiver and vice versa. The user who

creates the matrix to send the message encrypt the entries of the

matrix as M with the public key of the opponent using RSA

Algorithm. Receiver will decrypt the values using his private

key.

Fig.5. Entry Encryption with RSA

3.4 ENCRYPTION-DMAC

After the message formation,the message is converted into

ASCII form. Each character’s ASCII form is added with session

key length provided by the server. The above output is split into

nth and n - 1 digits that taken as row index and column

Index.Using the above computed indexes, get the entry from the

encrypted matrix computed in previous process. Repeat step-3

and step-4 for every charactes in the message. Calculate the hash

value of the original message and append with the above value

to form a resultant cipher as shown in Fig.6.

Fig.6. Encryption using DMAC

3.5 DECRYPTION-DMAC

In Fig.7, the cipher and the hash value is separated after it is

received.The cipher value is compared with the encrypted matrix

using sender’s public key. The Matching indexes will be

retrieved and stored in the location A. The same cipher value is

M Entry
from

Matrix

ASCII

FORM

KEY

LENGTH

+

ROW

COLUMN

|

Hash

Value

 C

 H

Sum of

Products (84)

Each digit

of sum

Place

Value

*

Sum

Sum of

Products

%

Each digit

of sum

(reverse)

Place

Value

*

Sum

Sum of

Products

%

Session

Key

Key length
 S(ASCII

Code)*bm

m = 1

Sum of

Products (72)

Sum (17936)
E.g.-AB

Column (8)

Row (44)

R. JEEVA: DMAC-AN INTEGRATED ENCRYPTION SCHEME WITH RSA FOR AC TO OBSTRUCT INFERENCE ATTACKS

654

decrypted with the receiver’s private key,the resulting value is

compared with the base matrix. The Matching indexes will be

retrieved and stored in the location B. If A = B,then compute the

subtraction of key value from A or B which provides

confidentiality. Perform the reverse ASCII process and compute

the hash value. If the received hash value equal to computed

hash value, then the message is received as send by the sender.

3.6 OBSTRUCTION OF MAN IN THE MIDDLE &

THIRD PARTY ATTACK

In this system, it shows the sign in process of client. The

server is in ready state to receive the client requests. As usual

client passes the user name and password encrypt with server

current public key known only to the legitimate server and

client. Access will be granted by returning the current client

public key which is known only to the corresponding client and

trusted server if the above condition is true. If Man-in-Middle

attack or third party attack rises, it has the possibility of giving

fake privileges but not the current public key of the user. At the

same time if the client that act as adversary tries to reroute the

messages to original server, the server will detect the difference

between the ID in the request and public key and adversary can

be blocked.

Fig.7. Decryption using DMAC

3.7 ALGORITHM-DMAC

Function Matrix_Size()

begin

n1= session key. length;

n2= base (n1);

for i = 0 to n1 do

n3=ASCII (key[i])*n2
i
;

for i = 1 to n3.length do

n4 = n3[i]*i;

for i = n3.length to 1 do

begin

j = 0;

n4 = n3[j]*i;

j++;

end

rowIndex = n3%n4;

colIndex = n3%n5;

end

Function DMACEncrypt()

begin

m1= ASCII(m)+sessionkey.length;

m2= nth term of m2;

m3= (n-1) terms of m2;

c1= c[m2][m3];

h1= hash(m);

append c1 with h1 as Cipher

return Cipher

end

3.7.1 Description:

Get the message to be send. Convert into ASCII form and

adding session key length provided by server. Encrypt the matrix

using recipient’s public key to encrypt the message. Get the

entries for the corresponding indices from the matrix. On

decryption, decrypt the cipher with receiver private key and find

the indexes match with the base matrix. Match the encrypted

cipher with the encrypted matrix to get the indexes and compare

both the indexes. Compute the hash value and check with the

received hash value to prove the data integrity.

4. PERFORMANCE ANALYSIS

The key vectors used in the code word permutation step

(Existing SAC) can be recovered with complexity O(NC) where

is NC code word length. The Table.1 shows the comparative

study of hacking complexity between the AC, ESAC [5], RMAC

and DMAC. In Fig.8, based on the comparative study DMAC

has the higher hacking complexity compared to other algorithms.

Entry from

Matrix

Retrieve

Matching
Indexes for

same entry

Retrieve
Matching

Indexes for

same entry

RSA

Decryption

Hash Value

ASCII to Char

Hash Value

COMPARE

COMPARE

C

H

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2012, VOLUME: 03, ISSUE: 04

655

Table.1. Hacking Complexity between ESAC & DMAC

Text

Length

Code Word Hacking Complexity Performance

AC ESAC RMAC DMAC AC ESAC RMAC DMAC ESAC RMAC DMAC

100 100 137 119 102 100 416 241 105 24.038 41.493 95.238

200 200 237 219 202 200 716 441 205 27.932 45.351 97.560

300 300 337 319 302 300 1016 641 305 29.527 46.801 98.360

400 400 437 419 402 400 1316 841 405 30.395 47.562 98.765

500 500 537 519 502 500 1616 1041 505 30.940 48.030 99.009

600 600 637 619 602 600 1916 1241 605 31.315 48.348 99.173

700 700 737 719 702 700 2216 1441 705 31.588 48.577 99.290

800 800 837 819 802 800 2516 1641 805 31.796 48.750 99.378

900 900 937 919 902 900 2816 1841 905 31.960 48.886 99.447

4.1 SAMPLE CALCULATION

Text Length (T) = 700

Destination user name = 8-16

Key Range = 8-16

Maximum key Range = 16

Maximum Destination user

name (D)
= 16

Random No (NR) = 3

Port Identity (PI) = 1

Hash value (H) = 1

No. of Control Messages by

client (CM)
= 2

No. of Control Messages by

server (SM)
= 1

Total length of Generated

Cipher (RMAC)

=

=

=

T + K + D + NR + PI + H

700 + 16 + 16 + 3 + 1 + 1

737

Hacking Complexity (RMAC) =

=

O(Nc)

700

Total length of Generated

Cipher (DMAC)

=

=

=

T + NR + H

700 + 1 + 1

702

Hacking Complexity (DMAC) =

=

=

O(Nc) + 3

(702) + 3

705

Performance = 100
(DMAC) Complexity Hacking

(RMAC) Complexity Hacking


= 100
705

700


= 99.29%

The security of the AC is increased by our system by 99%.

Fig.8. Hacking Complexity between ESAC, RMAC and DMAC

5. CONCLUSION

 In our system, we satisfied 3 out of 4 goals of cryptography

that are data integrity, confidentiality and authentication. Usage

of integer form with randomness in representing cipher, not only

makes the decryption easy but also it reduces the overhead in

computation in handling precision. Message indistinguishability

is not needed because the authentication is provided both from

the server and end users. The unsatisfied goal is nothing but non-

repudiation that requires logs which records the activities during

the session that leads to log management, concurrency control,

database security etc that makes the system very complex to

implement.

0

500

1000

1500

2000

2500

3000

3500

H
a

ck
in

g
 C

o
m

p
le

x
it

y

Message Length

Hacking Complexity of ESAC, RMAC &

DMAC

ESAC

RMAC

DMAC

R. JEEVA: DMAC-AN INTEGRATED ENCRYPTION SCHEME WITH RSA FOR AC TO OBSTRUCT INFERENCE ATTACKS

656

REFERENCES

[1] H. Kim, J.T. Wen and J.D. Villasenor, “Secure arithmetic

Coding”, IEEE Transaction on Signal Processing, Vol. 55,

No. 5, pp. 2263-2272, 2007.

[2] J.T. Wen, H. Kim and J.D. Villasenor, “Binary arithmetic

coding with key-based interval splitting”, IEEE Signal

Processing Letters, Vol. 13, No. 2, pp. 69-72, 2006.

[3] Jiantao Zhou, Oscar C. Au and Peter Hon-Wah Wong,

“Adaptive chosen-cipher text attack on secure arithmetic

coding”, IEEE Transaction on Signal Processing, Vol. 57,

No. 5, pp. 1825-1838, 2009.

[4] Raj S. Katti, Sudharsan K. Srinivasan and Aida Vosughi,

“On the Security of Randomized Arithmetic Codes Against

Ciphertext-Only Attacks”, IEEE Transaction on

Information Forensics and Security, Vol. 6, No. 1, pp. 19-

27, 2011.

[5] V. Kavitha and S. Balaji, “ESAC Based Channel Aware

Routing with Route Handoff”, International Journal on

Computer Science and Engineering, Vol. 3, No. 3,

pp.1260-1269, 2011.

[6] R. Bose and S. Pathak, “A novel compression and

encryption scheme using variable model arithmetic coding

and couple chaotic system”, IEEE Transactions on Circuits

and Systems, Vol. 53, No. 4, pp. 848-857, 2006.

[7] P.W. Moo and X. Wu, “Resynchronization properties of

arithmetic coding”, Proceedings of the IEEE International

Conference on Image Processing, Vol. 2, pp.545-549,

1999.

[8] H.A. Bergen and J.M. Hogan, “Data security in a fixed-

model arithmetic coding compression algorithm”,

Computers and Security, Vol. 11, No. 5, pp. 445-461,

1992.

[9] Lan H. Witten and J.G. Clearly, “On the privacy offered by

adaptive text compression”, Computers and Security,

Vol. 7, No. 4, pp. 397-408, 1988.

[10] H.A. Bergen and J.M. Hogan, “A chosen plaintext attack

on an adaptive arithmetic coding compression algorithm”,

Computers and Security, Vol. 12, No. 2, pp. 157-167,

1993.

[11] H. Ishibashi and K. Tanaka, “Data encryption scheme with

extended arithmetic coding”, Proceedings of the SPIE,

Mathematics of Data/Image Coding, Compression and

Encryption IV with Applications , Vol. 4475, pp. 222-233,

2001.

[12] A.J. Menezes, P.C. Van Oorschot and S.A. Vanstone,

“Handbook of Applied Cryptography”, CRC Press, 1997.

[13] P.G. Howard and J.S. Vitter, “Arithmetic coding for data

compression”, Proceedings of the IEEE, Vol. 82, No. 6,

pp. 857-865, 1994.

