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Abstract 

The proposal of indistinguishable encryption in Randomized 

Arithmetic Coding(RAC) doesn’t make the system efficient because it 

was not encrypting the messages it sends. It recomputes the cipher 

form of every messages it sends that increases not only the 

computational cost but also increases the response time.Floating point 

representation in cipher  increases the difficulty in decryption side 

because of loss in precison.RAC doesn’t handle the inference attacks 

like Man-in-Middle attack,Third party attack etc. In our system, 

Dynamic Matrix Arithmetic Coding(DMAC) using dynamic session 

matrix to encrypt the messages. The size of the matrix is deduced from 

the session key that contains ID of end users which proves the server 

authentication.Nonce values is represented as the public key of the 

opponents encrypted by the session key will be exchanged between the 

end users to provide mutual authentication. If the adversary try to 

compromise either server or end users,the other system won’t respond 

and the intrusion will be easily detected. we have increased the 

hacking complexity of AC by integrating with RSA upto 99%. 
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1. INTRODUCTION

 Arithmetic coding - The source symbols are encoded 

numerically [1] [6]. Each symbol does not necessarily translate 

into the same indexed code each time it is encoded. An input 

source string is represented by an interval of real numbers 

between 0 and 1. The range of the interval is need by two values, 

high and low, which are equal to 1 and 0 initially. The interval is 

successively subdivided as each new source symbol is read. 

Highly probable symbols (with respect to the model, as distinct 

from the more probable symbols in the input) reduce the interval 

by a smaller amount than less probable symbols. The precision 

with which to represent the interval increases in accordance with 

the length of the input string. 

Key Based Interval Splitting-a modification of arithmetic 

coding that uses key-based interval splitting to simultaneously 

enable data compression and encryption [2][7]. We have shown 

that even when intervals in an arithmetic coder are split, the code 

length increases relative to traditional arithmetic coding is 

bounded to less than 1 bit per N-symbol sequence, and in 

practice,the increase is often approximately 0.5 bits per -symbol 

sequence. In percentage terms, this efficiency penalty becomes 

negligibly small as N increases. The splitting produces 

encryption, the level of which is a function of the attributes of 

the key and the encoded sequence. While we have focused on 

the static binary case for simplicity, the methods presented here 

can also be applied to M-ary and/or adaptive arithmetic coding. 

Secure Arithmetic Coding-An arithmetic coder in which the 

intervals associated with each symbol combination are split in 

accordance with a key, and in which permutations are applied 

both to input symbol sequence and to the output binary 

sequence, has been presented [3][9]. The system offers both 

compression and security, and thwarts all known attacks aimed 

at obtaining information about the input or output permutation or 

the interval splitting keys. For each encoded symbol, a pair of 

intervals is split, and this split can occur in parallel. So the 

throughput can be identical to that of a traditional arithmetic 

coder. The permutations add negligible complexity. The security 

problem of Secure Arithmetic Coding (SAC) under an adaptive 

chosen-cipher text attack is it can recover the key vectors used in 

the codeword permutation step with complexity Ο (N), where N 

is the symbol sequence length [4]. This indicates that the SAC is 

not suitable for those applications where the attacker can have 

access to the decoder. Furthermore, we have discussed an 

improved version of the SAC such that it can resist the adaptive 

chosen-cipher text attack and can be conveniently incorporated 

with the context-based coding. 

Modifications of arithmetic coding (AC) have been proposed 

to improve the security of traditional AC [8] [10]. Two main 

modifications to AC are randomized AC (RAC) and AC with 

key-based interval splitting (KSAC). Chosen-plaintext attacks 

have been proposed for these two methods when the same key is 

used to encrypt different messages [9]. The security of AC in is 

based on the inability of the adversary to distinguish between the 

encryption of one plaintext from the encryption of another. By 

this definition, we prove that RAC is insecure even if a new 

random key is used to compress every message. The adversary 

can only eavesdrop on the cipher texts and cannot request 

encryptions of chosen-plaintexts. The method of first-compress-

then-encrypt, where the encryption is performed by a bitwise xor 

of the compressed output with a pseudorandom bit sequence, is 

provably secure with respect to chosen-plaintext attacks[13].  

In our system, we increse the security of arithmetic coding 

by merging the DMAC, dynamic sized session matrix with RSA 

algorithm. We handle the communication line attacks like Man-

in-Middle attack, Third party attack etc by introducing nonce 

values between the end users that provides mutual authentication 

and check the server authentication using the public key of end 

users. 

2. EXISTING SYSTEM

In this scheme (RAC) [4] that is chosen-plaintext secure, this 

is a stronger notion of security than having indistinguishable 

encryptions in the presence of an eavesdropper. To understand 

this scheme, it looks at AC as defined in, where the interval [0, 

1) is split in two ways as shown in Fig.1. The traditional way of

partitioning the interval [0, 1) is according to the probabilities 

(pA, pB) and the subintervals are labeled with symbols A and B. 
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Another way to partition the interval [0, 1) is split into 

subintervals of equal lengths and labeled 0 and 1. Partitioning 

once results in two subintervals [0, 0.5) (labeled 0) and [0.5, 1) 

(labeled 1). Partitioning once more results in each subinterval 

being partitioned into two intervals of equal length. Thus the 

interval [0, 1) is partitioned into the following four subintervals 

of equal length: [0, 0.25) (labeled 00), [0.25, 0.5) (labeled 01), 

[0.5, 0.75) (labeled 10), and [0.75, 1) (labeled 11). Therefore, 

doing the partitioning n times results in the interval [0, 1) being 

partitioned into 2
n
 subintervals each labeled with a distinct -bit 

binary number. The i
th

 of these subintervals is referred to as Ei(n) 

and label Ei(n) as the n-bit binary expansion of i, that is the label 

for that subinterval (i = 0,1,….2
n-1

). A string S that needs to be 

compressed is first converted into interval I(S) using the 

traditional AC method. Then the smallest n such that there exists 

Ei(n) and that is completely within I(S) is found (or Ei(n) subset 

of I(S)). The n-bit label on this Ei(n) is the output of the 

compression algorithm. The bits of the output can be put out as 

the symbols S of are being read[11]. 

Let S = ABBAB and pA = 2/3 = 0.67 and pB = 1/3 = 0.33. 

Using traditional AC we find that after A is read, I (A) = [0.33, 

1). If there exists an n and I such that I (A) is completely within 

Ei(n). E0(n) = [0, 0.5) and E1(n) = [0.5, 1). Since I(AB) is not 

within E0(n) or E1(n), no output can be put out yet[17]. The next 

symbol B is read and I (AB) = [0.33,0.55). Again, since I(AB) is 

not within E0(n) or E1(n), no output can be put out yet. The third 

symbol B is read and I(ABB) = [0.33,0.4026).  Now I(ABB) is 

within E1(1) = [0.25,0.5) with label 01. Therefore the output so 

far is 01. This is true because any interval Ei(n) that is within I 

(ABB) is a subinterval of E1(2). Note that I (ABBA) is not 

within any of these intervals so the next symbol B is read. I 

(ABBAB) = [0.354, 0.37). I(ABBAB) is within E2(3) = 

[0.25,.375) and the output is the 3-bit binary value of 2 which is 

010[11].  Ei(3), i = 0,…..7, consists of the intervals 

[0,1/23),[1/23,2/23),,,,,[1/23,1)=[0,0.125),[0.125,0.25),[0.25,0.3

75),[0.375,0.5),[0.5,0.625),[0.625,0.75),[0.75,0.875),[0.75,1).Sin

ce the bits 01have already had been output, we now output the 

third bit 0. However, I (ABBAB) is within a smaller interval, 

E5(4) = [5/24, 6/24) = [0.3125, .375). Since the 4-bit binary 

expansion of 5=0101 and the most significant three bits 010 

have already been output we now output the next bit 1. Since the 

last symbol has already been read, we now look for i and 

smallest n such that Ei(n) is completely within I(ABBAB). 

 

Fig.1. Two ways to partition the range [0, 1) 

It finds that and i = 23 and n = 6. Thus, Ei(n) = E23(6) = 

[23/2
6
, 24/2

6
) = [0.3596, 0.375) is completely within I(ABBAB). 

Note that this is the largest interval Ei(n) that is completely 

within I(ABBAB). Since the 6-bit binary expansion of 23 = 

010111 and 0101 has already been output, we output the 

remaining bits 11. Thus the final output is 010111 and the 

decimal value of 0.010111 is 0.359375 and this is within 

I(ABBAB) as expected. Note that maintaining Ei(n)  can be done 

incrementally with minimal overhead[11]. 

 

Fig.2. I (ABB) is a subinterval of E1(2) 

The above procedure as in Fig.2 was converted into an 

encryption by simply permuting the labels for each Ei(n). This 

can be done by doing a bitwise XOR of each label with a 

pseudorandom bit sequence of length n. Consider the labels of 

Ei(2) , which are 00, 01, 10, and 11. Doing a bitwise XOR with a 

2-bit pseudorandom bit sequence, say 10, with each of the Ei(2) 

results in E1(2)=10, E1(2)=11, E2(2)=00, E3(2)=01[12]. This 

system is simply AC followed by XORing with a pseudorandom 

bit sequence using randomized counter mode of operation. It 

looks at AC in a different way. The interval [0, 1) is split in two 

ways: 1) Split according to the probabilities pA and pB , and 2) 

split into intervals of equal length. In RAC, randomization is 

done using the first way of splitting [0, 1), while in our method 

randomization is done using the second way of splitting [0, 1). 

Since the randomization or permutation of the intervals is 

performed on intervals of equal length, unlike that in RAC, the 

new scheme is secure. 

3. PROPOSED SYSTEM 

3.1 SYSTEM ARCHITECTURE 

In our system in Fig.3, the security is provided in two ways: 

one by the server; other by the end user itself. When the user 

login the system, not only the status of the system is sent to the 

server, but also the public key of the user. During login, the end 

user generates two random prime numbers that in turn generates 

private and public key of the user. When the user chooses the 

recipient, the server checks the status of the recipient. If it is in 

Active state, it generates a session key that contains the details 

of sender ID, receiver ID, sender public key and recipient public 

key. When the sender and receiver receive this session key, they 

can verify the received public key with their own public key that 

provides authentication between the server and end users. The 

sender uses the receiver’s public key to encrypt the entries in the 

session matrix. Then the nonce values, public key of the end 

users encrypted with the received session key provided by the 

server will be exchanged between the end users. The public key 

of the receiver is encrypted with the session key sent to the 

recipient by the sender. The receiver verifies its own public key 

and in turn sends the sender’s public key and the sum of sender 

and receiver public key encrypted with session key send to the 

sender. This process provides the mutual authentication between 

the end users. 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 1 0 
E3(2) E2(2) E1(2) E0(2) 

0.33 
.. 

 

0.4026 

ABB 

0 1 

0.25 0.5 0.75 00 01 10 11 

0 1 

Traditional partitions 

Equal length partitions 

0 1 ps B A 

0 1 0.25 0.5 0.75 00 01 10 11 

0 1 
Equal length partitions 



ISSN: 2229-6948(ONLINE)                                                                                      ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2012, VOLUME: 03, ISSUE: 04 

653 

 

Fig.3. Architecture of DMAC 

3.2 MATRIX SIZE DETERMINATION 

After getting the session key from the server, it undergoes 

the sum of the summation of all the ASCII Codes in the message 

and its corresponding base value as in Fig.4. The output of the 

step-1 is used in two eays: one to generate a row value and the 

other to generate the column value. In row compuation side, the 

sum of the product of each digit of the ouput value in step-1 and 

the place value of each digit. The ouput value from step-1 taken 

modulo with the ouput value from step-3 to give the Row Size.In 

column compuation side, the sum of the product of each digit of 

the ouput value in step-1 and the reverse place value of each 

digit. The ouput value from step-1 is taken modulo with the 

ouput value from step-5 to give the Column Size. 

 

Fig.4. Size Deduction 

3.3 MATRIX ENCRYPTION USING RSA 

After computing the row and column size, we formulate the 

dynamic session matrix with the above computed value. The 

entry of the matrix is filled with the sequence of numbers 

starting from 1, continues till it reach the entry for a[n][n] as 

shown in Fig.5. As per the above architecture, the sender holds 

the public key of the receiver and vice versa. The user who 

creates the matrix to send the message encrypt the entries of the 

matrix as M with the public key of the opponent using RSA 

Algorithm. Receiver will decrypt the values using his private 

key. 

 

Fig.5. Entry Encryption with RSA 

3.4 ENCRYPTION-DMAC 

After the message formation,the message is converted into 

ASCII form. Each character’s ASCII form is added with session 

key length provided by the server. The above output is split into 

nth and n - 1 digits that taken as row index and column 

Index.Using the above computed indexes, get the entry from the 

encrypted matrix computed in previous process. Repeat step-3 

and step-4 for every charactes in the message. Calculate the hash 

value of the original message and append with the above value 

to form a resultant cipher as shown in Fig.6. 

 

Fig.6. Encryption using DMAC 

3.5 DECRYPTION-DMAC 

In Fig.7, the cipher and the hash value is separated after it is 

received.The cipher value is compared with the encrypted matrix 

using sender’s public key. The Matching indexes will be 

retrieved and stored in the location A. The same cipher value is 
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decrypted with the receiver’s private key,the resulting value is 

compared with the base matrix. The Matching indexes will be 

retrieved and stored in the location B. If A = B,then compute the 

subtraction of key value from A or B which provides 

confidentiality. Perform the reverse ASCII process and compute 

the hash value. If the received hash value equal to computed 

hash value, then the message is received as send by the sender. 

3.6 OBSTRUCTION OF MAN IN THE MIDDLE & 

THIRD PARTY ATTACK 

In this system, it shows the sign in process of client. The 

server is in ready state to receive the client requests. As usual 

client passes the user name and password encrypt with server 

current public key known only to the legitimate server and 

client. Access will be granted by returning the current client 

public key which is known only to the corresponding client and 

trusted server if the above condition is true. If Man-in-Middle 

attack or third party attack rises, it has the possibility of giving 

fake privileges but not the current public key of the user. At the 

same time if the client that act as adversary tries to reroute the 

messages to original server, the server will detect the difference 

between the ID in the request and public key and adversary can 

be blocked.  

 

Fig.7. Decryption using DMAC 

3.7 ALGORITHM-DMAC 

Function Matrix_Size() 

begin 

n1= session key. length; 

n2= base (n1); 

for i = 0 to n1 do 

n3=ASCII (key[i])*n2
i
; 

for i = 1 to n3.length do 

n4 = n3[i]*i; 

for i = n3.length to 1 do 

begin 

j = 0; 

n4 = n3[j]*i; 

j++; 

end 

rowIndex = n3%n4; 

colIndex = n3%n5; 

end 

 

Function DMACEncrypt() 

begin 

m1= ASCII(m)+sessionkey.length; 

m2= nth term of m2; 

m3= (n-1) terms of m2; 

c1= c[m2][m3]; 

h1= hash(m); 

append c1 with h1 as Cipher 

return Cipher 

end 

3.7.1 Description: 

Get the message to be send. Convert into ASCII form and 

adding session key length provided by server. Encrypt the matrix 

using recipient’s public key to encrypt the message. Get the 

entries for the corresponding indices from the matrix. On 

decryption, decrypt the cipher with receiver private key and find 

the indexes match with the base matrix.  Match the encrypted 

cipher with the encrypted matrix to get the indexes and compare 

both the indexes. Compute the hash value and check with the 

received hash value to prove the data integrity. 

4. PERFORMANCE ANALYSIS 

The key vectors used in the code word permutation step 

(Existing SAC) can be recovered with complexity O(NC) where 

is NC code word length. The Table.1 shows the comparative 

study of hacking complexity between the AC, ESAC [5], RMAC 

and DMAC.  In Fig.8, based on the comparative study DMAC 

has the higher hacking complexity compared to other algorithms.  
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Table.1. Hacking Complexity between ESAC & DMAC 

Text 

Length 

Code Word Hacking Complexity Performance 

AC ESAC RMAC DMAC AC ESAC RMAC DMAC ESAC RMAC DMAC 

100 100 137 119 102 100 416 241 105 24.038 41.493 95.238 

200 200 237 219 202 200 716 441 205 27.932 45.351 97.560 

300 300 337 319 302 300 1016 641 305 29.527 46.801 98.360 

400 400 437 419 402 400 1316 841 405 30.395 47.562 98.765 

500 500 537 519 502 500 1616 1041 505 30.940 48.030 99.009 

600 600 637 619 602 600 1916 1241 605 31.315 48.348 99.173 

700 700 737 719 702 700 2216 1441 705 31.588 48.577 99.290 

800 800 837 819 802 800 2516 1641 805 31.796 48.750 99.378 

900 900 937 919 902 900 2816 1841 905 31.960 48.886 99.447 

 

4.1 SAMPLE CALCULATION 

Text Length (T) = 700 

Destination user name = 8-16 

Key Range = 8-16 

Maximum key Range = 16 

Maximum Destination user 

name (D) 
= 16 

Random No (NR) = 3 

Port Identity (PI) = 1 

Hash value (H) = 1 

No. of Control Messages by 

client (CM) 
= 2 

No. of Control Messages by 

server (SM) 
= 1  

Total length of Generated 

Cipher (RMAC) 

= 

= 

= 

T + K + D + NR + PI + H 

700  + 16 + 16 + 3 + 1 + 1 

737 

Hacking Complexity (RMAC) = 

= 

O(Nc) 

700 

Total length of Generated 

Cipher (DMAC)    

= 

= 

= 

T + NR + H 

700 + 1 + 1 

702 

Hacking Complexity (DMAC) = 

= 

= 

O(Nc) + 3 

(702)  + 3 

705 

 

Performance  = 100
(DMAC) Complexity Hacking

(RMAC) Complexity Hacking
  

= 100
705

700
  

= 99.29% 

The security of the AC is increased by our system by 99%. 

 

Fig.8. Hacking Complexity between ESAC, RMAC and DMAC 

5. CONCLUSION 

 In our system, we satisfied 3 out of 4 goals of cryptography 

that are data integrity, confidentiality and authentication. Usage 

of integer form with randomness in representing cipher, not only 

makes the decryption easy but also it reduces the overhead in 

computation in handling precision. Message indistinguishability 

is not needed because the authentication is provided both from 

the server and end users. The unsatisfied goal is nothing but non-

repudiation that requires logs which records the activities during 

the session that leads to log management, concurrency control, 

database security etc that makes the system very complex to 

implement.  
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