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Abstract 

Improving quality and intelligibility of speech signals in mobile 

devices has been studied with great interest in the past.  Speech 

information in communication channels is usually corrupted by 

additive acoustic noise, reverberation or channel noise. This paper 

explores into the possibilities of enhancing corrupted speech using the 

Spectral Subtraction (SS) and Linear Prediction Coding (LPC) system 

for mobile applications only in acoustically noisy conditions.  A 

Spectral Subtraction block is cascaded in series with a LPC system.  

For a pth order LPC system, a Levinson-Durbin based algorithm 

computes the LPC coefficients.  Typically LPC is used as a data 

reduction system in speech communication but in this work, we try to 

find an optimum pth order LPC system that could enhance speech 

quality. We focus on improving speech quality and not speech 

intelligibility in this paper. The algorithm output will be evaluated 

objectively with a combined Perceptual Evaluation of Speech Quality 

(PESQ) and Itakura-Saito (IS) system and will be compared against 

Mean Opinion Scores (MOS) of various other Speech Enhancement 

algorithms. 
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1. INTRODUCTION

Speech captured by microphones in cell phones or hearing 

aids are always corrupted by either additive noise or 

reverberation or both of them simultaneously.  Hence, the signal 

of interest-speech needs to be cleaned off irrelevant contents that 

cause the speech corruption.  However, removing the irrelevant 

information must not degrade the relevant information (speech). 

The objective of this paper is to enhance speech quality in order 

to reduce listener fatigue.   

Noise is everywhere around.  Even in places that we feel is 

quiet, will have a noise floor well below the full scale level.  In 

streets, restaurants, theaters, airports, exhibitions, markets and 

shopping centers noise is prevalent.  During conversations on 

mobiles or hearing aids, these noise contents contaminate the 

meaningful speech conversation between person A and person 

B. In concert halls, the direct sound (speech or music) is 

contaminated by the early and late reflections from the 

surrounding walls.  This paper will explore a way to remove the 

additive noise from the signal recorded of a single microphone.  

We cascade a spectral subtraction based noise cancellation 

algorithm to a Linear prediction algorithm in series and evaluate 

the output with a PESQ-IS executable. 

Fig.1. Paper block diagram: SS algorithm cascaded in series with 

LPC algorithm and Evaluation block 

2. LITERATURE REVIEW: SPEECH 

ENHANCEMENT

From 1970’s, several single microphone DSP strategies have 

been put forward in literature to cancel the noisy speech.  Loizou 

[1] in his book gives a thorough review of these algorithms and 

broadly groups them into 4 categories: 

 Spectral Subtraction algorithms [7], [8]

 Wiener filtering algorithms

 Statistical model-based algorithms

 Subspace algorithms.

The Spectral Subtraction algorithm attempts to estimate the 

background noise spectrum and subtract it from the noisy speech 

frequency spectrum. Wiener filtering algorithms searches for an 

optimum filter that minimizes the mean-squared error (MSE) 

between output and desired signal. Statistical model-based 

algorithms deploy statistical strategies to estimate and enhance 

the speech frequency spectrum.  The subspace algorithms 

decompose the corrupted signal into signal and noise subspaces 

and subsequently nullify the noise subspace.  Hu and Loizou [1] 

compared the performance of these different algorithms 

categories.  Additionally, there are many more algorithm 

varieties.  For example, in [5] the algorithm exploits the 

harmonic nature of speech components.  There are dual to multi-

microphone (microphone array) based active noise cancellation 

techniques too.  In this work, we explore into noise cancellation 

methods for signal recorded of single microphone only. 

3. WHY SPECTRAL SUBTRACTION?

In mobiles, the microphones are usually very close to the 

speaker’s mouth but in case of hearing aids, the target speech is 

usually far away from microphones.  Hence, algorithms that are 

meant to cancel noise for hearing aids must be able to deal with 

signals of very low Signal to noise Ratio’s (SNR) as compared 

against algorithms for mobile devices.  For mobile application, 

which is the project interest, it is enough that the algorithm is 

able to cancel noise for SNR 10 dB.  In [3], it is shown that 

Spectral Subtraction algorithm performs much better at 10 dB 

Speech 

Output 

(Enhanced) 

Speech  

Input 

(Corrupted) 

Spectral 

Subtraction 
LPC PESQ-IS 



ISSN: 2229-6948(ONLINE)                                                                                      ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2012, VOLUME: 03, ISSUE: 04 

627 

SNR when compared to other algorithms.  Hence, we cascade 

Spectral Subtraction to an LPC system to examine further 

possibilities of speech enhancement at higher signal to noise 

ratios.   

4. WHY LINEAR PREDICTION CODING? 

Spectral Subtraction has been justified to be a suitable 

algorithm to meet the software requirements of this project.  To 

improve the software performance further, we cascade a LPC 

system [9] with SS.    

Formants are the spectral peaks of the sound spectrum of the 

voice. In speech science and phonetics, formant is also used to 

mean an acoustic resonance of the human vocal tract.  Usually, 

there are four speech formants in spectral region 1-4 KHz.  On a 

Z-transform plane, we need 4 conjugate pair poles (8 poles) to 

model the formants in the speech spectrum and at least 2 to 4 

poles to model the spectral roll off in the high frequencies.  

Hence, in general, engineers choose an LPC order (p value) 10 

to 12 for successful modeling of vocal resonance that varies in 

time because of the change in tract volume.   

 

Fig.2. Speech formats la.wav Fs = 16 KHz. F1 to F4 show four 

formants in the low frequencies 

The Input Speech is corrupted.  It has spurious peaks in the 

spectrum caused by additive noise.  By modeling the vocal tract 

response and applying it on corrupt signal, we can get rid of the 

spurious speech and obtain a speech signal that is closer to pure 

speech that is created by pumped excitation from lungs into the 

vocal tract.  The vocal tract response varies from person to 

person and also in time.  The tract response is unknown.  The 

higher the LPC filter order, the system will model the spurious 

noise peaks as model response of the tract.  Higher the filter 

order, the model response will closely follow the actual 

spectrum shape (Fig.3 and Fig.4).  Therefore, we need to find an 

optimal pth order filter that will only model the formants and 

skip the spurious noise peaks and valleys in the spectrum.  This 

approach is expected to enhance the speech quality.   

Generally, LPC is used for data reduction applications in 

speech processing.  In this work, we use it for enhancing the 

speech. The error signal generated by the subtraction of 

estimated signal from original is used directly to excite the 

resonance formants obtained by the LPC model.  There is no 

need for codebook (CELP) excitation.  A combination of mixing 

the error signal with original signal will also be examined as a 

source for exciting the resonance cavity response.  There is no 

encoder and decoder in this system because LPC is just used for 

speech enhancement.  A p
th

 order LPC filter will be optimally 

approximated that enhances the speech effectively. 

 

Fig.3. LPC Order 12 

 

Fig.4. LPC Order 50 

5. SPECTRAL SUBTRACTION (SS):  

ALGORITHM DETAILS 

The spectral subtraction algorithm is used widely in speech 

enhancement [2]. A noise corrupted speech signal y(n) is 

composed of clean speech signal x(n) and noise d(n).  The noise 
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and the clean speech are assumed to be independent and 

uncorrelated. The spectrum of the noise signal D() obtained by 

Fourier transform is subtracted from corrupted speech spectrum 

to attain clean speech spectrum.  The clean speech spectrum is 

reconstructed to a voltage signal back in the time domain signal 

using the inverse Fourier transform. 

 y(n) = x(n) + d(n) (1) 

 X() = Y() – D() (2) 

5.1 PROBLEMS IN SS: MUSICAL NOISE 

 

Fig.5. Isolated peaks shown in elliptical circles contribute to 

musical noise 

The spectral subtraction by Boll in [2] uses a STFT (short-

time Fourier transform) to calculate magnitude, subtract bias 

from the noise estimate, and does a half wave rectification to 

avoid negative magnitude spectrum.  A voice activity detector 

(VAD) is also used to attenuate the noisy signal when speech is 

absent.  Isolated peaks are created during the non-linear 

processing of negative values during half-wave rectification.  

After doing inverse Fourier transform, in re-synthesized time 

domain signal, these peaks sound similar to tones with 

frequencies that change randomly from frame to frame.  This 

type of noise has a warbling sound along with a tone like quality, 

and is generally called as ‘musical noise’.  Musical noises can be 

more annoying than the actual background noises like babble 

noise or restaurant noise.   

Fig.5 shows a noisy spectrogram and the bottom picture 

shows a processed clean spectrogram with isolated spectral 

peaks in the spectrum that contribute to the musical noise 

phenomenon.   

6. LINEAR PREDICTION CODING (LPC):  

ALGORITHM DETAILS 

A simple LPC system is shown in Fig.6. Speech analysis and 

synthesis with Linear Predictive Coding (LPC) exploit the 

predictable nature of speech signals. Cross-correlation, 

autocorrelation, and auto covariance provide the mathematical 

tools to determine this predictability. If we know the 

autocorrelation of the speech sequence, we can use the 

Levinson-Durbin algorithm to and an efficient solution to the 

least mean-square modeling problem and use the solution to 

compress or re-synthesize the speech [4]. 

 

Fig.6. A simple LPC system 

The linear prediction problem can be stated as finding the 

coefficients which result in the best prediction of the speech 

sample in terms of the past samples.  Linear prediction models 

the human vocal tract as an infinite impulse response (IIR) 

system that produces the speech signal. For vowel sounds and 

other voiced regions of speech, which have a resonant structure 

and high degree of similarity over-time shifts that are multiples 

of their pitch period, this modeling produces an efficient 

representation of the sound [4].  The general linear system 

transfer function gives rise to three different types of linear 

model, dependent on the form of the transfer function H(z): 

 When the numerator of the transfer function is constant, 

an all-pole or autoregressive (AR) model is defined.  

 The all-zero or moving average model assumes that the 

denominator of the transfer function is a constant.  

 The third and most general case is the mixed pole-zero 

model or autoregressive moving average (ARMA) model, 

where nothing is assumed about the transfer function. 

The all-pole model for linear prediction is the most widely 

studied and implemented of these three approaches [4]. 

7. HUMAN SPEECH PRODUCTION, 

ANATOMY AND FUNCTION 

The lungs initiate the speech process by acting as the bellows 

that expels air up into the other regions of the system. The air 

that leaves the lungs then enters into the remaining regions of the 

speech production system via the trachea. 
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Fig.7. Human speech production system: Courtesy [4] 

The turbulent air stream is driven up the trachea into the 

larynx. The larynx is a box-like apparatus that consists of 

muscles and cartilage. Two membranes, known as the vocal 

folds, span the structure, supported at the front by the thyroid 

cartilage and at the back by the Arytenoid cartilages.  The 

arytenoids are attached to muscles which enable them to 

approximate and separate the vocal folds. The space between the 

vocal folds is called the glottis. A speech sound is classified as 

voiced or voiceless depending on the glottal behavior as air 

passes through it [4]. 

As air rushes through the glottis, the suction phenomenon 

known as the Bernoulli Effect is observed. This effect due to 

decreased pressure across the constriction aperture adducts the 

folds back together. The interplay between these forces results in 

vocal fold vibration, producing a voiced sound. This phonation 

has a fundamental frequency directly related to the frequency of 

vibration of the folds. During a voiceless speech sound, the 

glottis is kept open and the stream of air continues through the 

larynx without hindrance. The resulting glottal excitation 

waveform exhibits a flat frequency spectrum [4]. 

8. ALL POLE LINEAR PREDICTION MODEL 

A linear prediction estimate at sample number n for the 

output signal y by a p
th

 order prediction filter can be given by, 

    



p

k

knakyny
1

ˆ  (3) 

The error or residue between the output signal and its 

estimate at sample n can then be expressed as the difference 

between the two signals. 

      nynyne ˆ  (4) 

 

Fig.8. A graphical representation of an all pole linear system, 

where the output is a linear function of scaled previous outputs 

and the input 

The total squared error for an as of yet unspecified range of 

signal samples was given by the following equation, 
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This equation gives a value indicative of the energy in the 

error signal. Obviously, it was desired to choose the predictor 

coefficients so that the value of E was minimized over the 

unspecified interval. The optimal minimizing values can be 

determined through differential calculus, i.e. by obtaining the 

derivative of the above equation with respect to each predictor 

coefficient and setting that value equal to zero. 
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For the sake of brevity and future utility, a correlation 

function f was defined. The expansion of this summation 

describes what will be called the correlation matrix [4]. 

       
n

knyinyki .,  (7) 
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Substituting the correlation function into above equation 

allows it to be written more compactly, 

     


p
i i kiak

1
,,0   (8) 

These derived set of equations are called the normal 

equations of linear prediction [4]. 

9. THE AUTOCORRELATION METHOD 

The autocorrelation method of linear prediction minimizes 

the error signal over all time, from −  to + . When dealing 

with finite digital signals, the signal was windowed such that all 

samples outside the interval of interest are taken to be zero. If 

the signal was non-zero from 0 to N − 1, then the resulting error 

signal will be non-zero from 0 to N − 1 + p. Thus, summing the 

total energy over this interval was mathematically equivalent to 

summing over all time [4]. 
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This form of the correlation function was simply the short-

time autocorrelation function of the signal, evaluated with a lag 

of (i − k) samples. This fact gives this method of solving the 

normal equations its name. The implication of this convenience 

was such that the correlation matrix defined by the normal 

equations exhibits a double-symmetry that can be exploited by a 

computer algorithm.  

 

Fig.9. Autocorrelation of a time frame 

Given that ai,j was the member of the correlation matrix on 

the i
th

 row and j
th

 column, the correlation matrix demonstrates, 
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These redundancies mean that the normal equations can be 

solved using the Levinson-Durbin method, a recursive procedure 

that greatly reduces computational load [4]. 

10. LEVINSON-DURBIN METHOD 

By exploiting the Toeplitz nature of the matrix of 

coefficients, several efficient recursive procedures have been 

devised for solving this system of equations. The well known of 

these methods are the Levinson and Robertson algorithms. 

Durbin’s recursive algorithm followed earlier work of Levinson 

[2]. The following is the Durbin’s recursive solution for 

autocorrelation equations, 
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      121  i
i EkiE  (10) 

These equations are recursively solved for i = 1, 2….p and 

the final solution was given as, 

 pj
p
jj  1       (11) 

11. THE SPEECH ENHANCEMENT SYSTEM 

The single channel Input corrupted speech is sampled at 8 

KHz at 16 bit resolution per sample.  A short-time Fourier 

transform (STFT) is performed on the signal with frame size of 

20 milli seconds at 75% overlap rate to avoid spectral leakage.  

Before doing STFT, the section of the speech signal is multiplied 

with a hamming window.  Spectral Subtraction is done on the 

current frame.  The output of the SS algorithm for the current 

frame is passed onto LPC block for further enhancement of 

speech. 

12. SPEECH QUALITY MEASUREMENTS 

It is very essential to benchmark the software of interest in 

order to evaluate its performance based on sound quality.  

Speech Quality Measurements are of two types: 

 Objective measurements 

 Subjective measurements 

Below is Fig.10 that vividly captures the categories of speech 

quality measurements. 
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Fig.10. The classification of speech quality measurement 

This paper work focuses only on objective speech quality 

measurements because the subjective measurements are time 

consuming and expensive.  In industry, it is very critical to meet 

software deadlines often.  Hence it would be handy to 

objectively test the software’s performance.  A combination of 

Itakura-Saito scheme mentioned in [3] is used. 

12.1 PESQ 

 

Fig.11. Structure of perceptual evaluation of speech quality 

(PESQ) model [1] 

PESQ stands for 'Perceptual Evaluation of Speech Quality' 

and is an enhanced perceptual quality measurement for voice 

quality in telecommunications.  

PESQ [11] was specifically developed to be applicable to 

end-to-end voice quality testing under real network conditions, 

like VoIP, POTS, ISDN, and GSM [6].  The structure of the 

PESQ measure is shown in Fig.11.  The clean and degraded 

signals are first level-equalized to a standard listening level.  

Then they are filtered by a filter with response of a standard 

telephone handset.  The signals are then synchronized in time to 

compensate for any time delays, and then processed through an 

auditory transform to obtain the loudness spectra.   The auditory 

transform in PESQ uses a psychoacoustic model which 

translates the reference and degraded signals into a 

representation of perceived loudness in time and frequency. 

12.2 ITAKURA-SAITO (IS) 

The Itakura–Saito distance is a measure of the perceptual 

difference between a reference power spectrum S() and a test 

spectrum  X(). It was proposed by Fumitada Itakura and Shuzo 

Saito in the 1970s while they were with Nippon Telegraph and 

Telephone [1]. 
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Owing to its asymmetric nature, the IS measure provides 

more emphasis on spectral peaks than spectral valleys.  The IS 

distortion measure between the estimated and true short-time 

power spectra at the k
th 

frequency bin is given by, 
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In [3], Loizou found that a PESQ- IS combination ended in a 

correlation coefficient that is greater than 0.9 between predicted 

and actual quality scores. This combination is given by, 

 

BF5;  11.549 +BF4            

 2.593 -BF3  0.049 - BF2            

 0.047 +BF1  1.740 + 1.757 = Y_all

2.564); - PESQmax(0, = BF5

2.431); - PESQmax(0, = BF4

 3.559); -ISmax(0, =BF3

 11.708);-ISmax(0, = BF2

 1.696);- PESQmax(0, =BF1







 (14) 

In [3], the authors evaluated a number of speech 

enhancement algorithms both objectively and subjectively.  

These algorithms are tabulated in Table.1.  In our paper, all these 

algorithms will not be discussed widely but their names are 

mentioned here because the MOS scores of these algorithms 

published in [3] will be compared against our Speech 

Enhancement algorithm for the sake of justifying any drawn 

conclusion.  We will evaluate Speech Enhancement for speech 

corrupted by multi-talker babble noise, restaurant noise and 

airport noise. 

Table.1. List of speech enhancement algorithms mentioned in 

[3] included for comparative purposes 

Sl. No. Abbreviation Full form of algorithm 

1 MMSE SPU 

Minimum Mean Square 

Estimation Speech Presence 

Uncertainty 

2 logMMSE 
Log Minimum Mean Square 

Estimation 

3 
logMMSE 

SPU 

Log Minimum Mean Square 

Estimation Speech Presence 

Uncertainty 

Reference 

Signal 

Level 

Align 

Input 

Filter 

Time 

Align 
& 

Equalize 

Auditory 

Transform 

Disturbance 

Processing 

Auditory 

Transform 

Prediction of 

perceived 

speech 

quality 

Cognitive 

modeling 

Identify 

bad 

intervals 

Degraded 

Signal 
Level 

Align 

Input 

Filter 

Re-align bad 

intervals 

System 

under 

test 

Output 

Speech 

Speech Quality 

Measures 

Objective 

Measures 

Subjective 

Measures 

Intrusive 

Measures 

Non-Intrusive 

Measures 

Input 

Speech 

Output 

Speech 

System under Test System under Test 

System System 

Speech Quality Evaluation Speech Quality Evaluation 
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4 pMMSE 

Speech Enhancement based on 

perceptually motivated Bayesian 

Estimators of the Magnitude 

Spectrum 

5 AudSup 
Speech Enhancement based on 

Audible Noise Suppression 

6 Wiener-as 

Speech Enhancement based on A 

Priori Signal To Noise 

Estimation 

7 WT 

Speech Enhancement based on 

Wavelet Thresholding the 

Multitaper Spectrum 

8 MB Multi-Band Spectral Subtraction 

9 RDC-ne 
RDC Algorithm That Included 

Noise Estimation 

10 RDC 

Spectral Subtraction using 

Reduced Delay Convolution and 

Adaptive Averaging. 

11 KLT Karhunen-Loeve Transform 

12 pKLT 
Perceptual Karhunen-Loeve 

Transform 

13. PLOTS AND RESULTS 

As shown in Fig.12 and Fig.13, the corrupted speech was 

successfully cleaned and processed for speech enhancement.  

The mean opinion scores of the algorithms mentioned in Table.1 

was compared against MOS for SS-LPC algorithm.   

It was inferred that the SS-LPC algorithm slightly 

outperformed the existing algorithms when the speech is 

corrupted by babble noise, restaurant noise and airport 

background noise at SNR 10 dB.  The MOS scores was collected 

for a set of 16 sentences mentioned in [3] and average of all 16 

scores were computed and plotted for SS-LPC algorithm in 

Fig.14, Fig.15 and Fig.16. 

The MB (Multi band Spectral subtraction) was known to 

perform best at 10 dB SNR out of rest of the algorithms known.  

While an objective score improvement was observed for SS-

LPC algorithm as against MB algorithm, [4] and [7] mentions 

that only a change in MOS score by 0.25 will cause a change 

perceptually.  A change by negative 0.25 means a slight 

degradation of speech quality and +0.25 improvement means 

speech quality improvements.  Our SS-LPC algorithm does 

neither shows scores that degrade speech quality subjectively 

nor does it seem to improve speech quality subjectively as the 

scores objectively have increased slightly than MB MOS scores. 

 

 

Fig.12. Time domain plots: (Top) clean speech; (mid) Speech 

corrupted by babble noise at 10 dB SNR; (bottom) Output of SS-

LPC algorithm with processed speech 

 

Fig.13. Spectrograms: (Top) clean speech; (mid) Speech 

corrupted by babble noise at 10 dB SNR; (bottom) Output of SS-

LPC algorithm with processed speech. 
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Fig.14. MOS overall for babble at SNR 10 dB 

 

Fig.15. MOS overall for restaurant at SNR 10 dB 

 

Fig.16. MOS overall for airport at SNR 10 dB 

14. CONCLUSION 

In this work, we have proposed an algorithmic strategy for 

single channel speech enhancement in noisy conditions for 

mobile speech processing applications.  A combination of 

spectral subtraction and linear prediction coding is used.  A 

PESQ-IS evaluation strategy is used to benchmark the software 

written in MATLAB and the synergistic effect of the SS-LPC 

combination in improving speech quality is discussed.  The 

results could be summarized as follows, 

 A minimal improvement in objective MOS scores was 

observed for speech corrupted by babble noise, restaurant 

noise and airport noise at SNR 10 dB.  Babble noise is 

stationary noise but restaurant and airport noise is 

unstationary.  

 Marginal subjective speech quality could be possible 

based on correlation equation provided for objective-

subjective scores in [4] and [7]. 

 Further improvements need to be made in future for 

attaining greater performance. 

REFERENCES 

[1] P.C. Loizou,“Speech Enhancement: Theory and Practice”, 

CRC Press, Boca Raton, FL, 2007. 

[2] S.F. Boll, “Suppression of acoustic noise in speech using 

spectral subtraction”, IEEE Transactions on Acoustics, 

Speech and Signal Processing, Vol. 27, No. 2, pp. 113-120, 

1979. 

[3] Yi Hu and Philipos C. Loizou, “Evaluation of Objective 

Quality Measures for Speech Enhancement”, IEEE 

Transactions on Audio, Speech and Language Processing, 

Vol. 16, No. 1, pp. 229-238, 2008. 

[4] Alan O’Cinneide, David Dorran and Mikel Gainza, “Linear 

prediction-The technique, ITS solution and Application to 

Speech”, Dublin Institute of Technology, Internal 

Technical Report, 2008. 

[5] Jin Wen, Xin Liu, M.S. Scordilis and Lu Han, “Speech 

Enhancement Using Harmonic Emphasis and Adaptive 

Comb Filtering”, IEEE Transactions on Audio, Speech and  

Language Processing, Vol. 18, No. 2,  pp. 356-368, 2010. 

[6] Yi Hu and  Philipos C. Loizou, “Subjective comparison 

and evaluation of speech enhancement algorithms", 

presented at Speech Communication, Vol. 49, No. 7, pp. 

588-601, 2007. 

[7] K. Lebart, J.M. Boucher and P.N. Denbigh, “A New 

Method Based on Spectral Subtraction for Speech 

Dereverberation”, Acta Acustica united with Acustica, Vol. 

87, No. 3, pp. 359-366, 2001. 

[8] Ekaterina Verteletskaya and Boris Simak, “Noise 

Reduction Based on Modified Spectral Subtraction 

Method”, IAENG International Journal of Computer 

Science, Vol. 38, No. 1, 2011. 

[9] Jeremy Bradbury, “Linear Predictive Coding”, 2000. 
[10]  ITU-T Recommendation P.862, “Perceptual Evaluation of 

Speech Quality (PESQ), an objective method for end to end 

speech quality assessment of narrowband telephone 

networks and speech coders”, 2001. 
[11] http://www.pesq.org

0 

1 

2 

3 

M
ea

n
 O

p
in

io
n

 S
co

re
(M

O
S

) 

Algorithm 

MOS Overall for babble at SNR: 10 dB 

0 

1 

2 

3 

M
ea

n
 O

p
in

io
n

 S
co

re
(M

O
S

) 

Algorithm 

MOS Overall for Restaurant at SNR: 10 

dB 

0 

1 

2 

3 

M
ea

n
 O

p
in

io
n

 S
co

re
(M

O
S

) 

Algorithm 

MOS Overall for Airport at SNR: 10 dB 


