APPLICATION OF RANKING BASED ATTRIBUTE SELECTION FILTERS TO PERFORM AUTOMATED EVALUATION OF DESCRIPTIVE ANSWERS THROUGH SEQUENTIAL MINIMAL OPTIMIZATION MODELS

ICTACT Journal on Soft Computing ( Volume: 5 , Issue: 1 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff19fd17000000aa49030001000600
In this paper, we study the performance of various models for automated evaluation of descriptive answers by using rank based feature selection filters for dimensionality reduction. We quantitatively analyze the best feature selection technique from amongst the five rank based feature selection techniques, namely Chi squared filter, Information gain filter, Gain ratio filter, Relief filter and Symmetrical uncertainty filter. We use Sequential Minimal Optimization with Polynomial kernel to build models and we evaluate the models across various parameters such as Accuracy, Time to build models, Kappa, Mean Absolute Error and Root Mean Squared Error. Except with Relief filter, for all other filters applied models, the accuracies obtained are at least 4% better than accuracies obtained with models with no filters applied. The accuracies recorded are same across Chi squared filter, Information gain filter, Gain ratio filter and Symmetrical Uncertainty filter. Therefore accuracy alone is not the determinant in selecting the best filter. The time taken to build models, Kappa, Mean absolute error and Root Mean Squared Error played a major role in determining the effectiveness of the filters. The overall rank aggregation metric of Symmetrical uncertainty filter is 45 and this is better by 1 rank than the rank aggregation metric of information gain attribute evaluation filter, the nearest contender to Symmetric attribute evaluation filter. Symmetric uncertainty rank aggregation metric is better by 3, 6, 112 ranks respectively when compared to rank aggregation metrics of Chi squared filter, Gain ratio filter and Relief filters. Through these quantitative measurements, we conclude that Symmetrical uncertainty attribute evaluation is the overall best performing rank based feature selection algorithm applicable for auto evaluation of descriptive answers.

Authors

C. Sunil Kumar1, R. J. Rama Sree2
Bharathiar University, India1, Rashtriya Sanskrit Vidyapeetha, India2

Keywords

Descriptive Answers, Text Classification, Rank Based Filters, Feature Selection, Dimensionality Reduction

Published By
ICTACT
Published In
ICTACT Journal on Soft Computing
( Volume: 5 , Issue: 1 )
Date of Publication
October 2014
Pages
860-868

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in