COMPARATIVE ANALYSIS OF HUMAN INTERACTION PATTERN MINING APPROACHES

Abstract
Opinion Mining and Sentiment Analysis in Natural Language Processing (NLP) are challenging, as they require deep understanding. Understanding involves methods that could differentiate between the facts of explicit and implicit, regular and irregular, syntactical and semantic language rules. Researches oriented towards Natural Language Processing and Sentiment Analysis have many unresolved problems like co-reference resolution, negation handling, anaphora resolution, named-entity recognition, and word-sense disambiguation. This paper is proposed to develop an Optimized Partial Ancestral Graph (O-PAG) which is capable of mining patterns in human interactions and compare it with an existing tree based pattern mining approach. The experimental results are exposed to number of frequent interactions made and execution time. Results indicate that the overall performance can reach considerable improvements on using O-PAG approach.

Authors
S Uma1, J Suguna 2
C.M.S. College of Science and Commerce, India1, Vellalar College for Women, India2

Keywords
Frequent Pattern Mining, Sequential Pattern, Enhanced PCA, Enhanced ABC, Pattern Mining
Published By :
ICTACT
Published In :
ICTACT Journal on Soft Computing
( Volume: 10 , Issue: 2 )
Date of Publication :
January 2020

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.