vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff1c9d27000000cf7d010001000100
In this article, a new 4-channel dense wavelength division multiplexing (DWDM) optical transmission system model is proposed with dispersion compensation techniques. Dispersion compensation mechanism limits the pulse broadening effects of transmitted light in optical communication systems. To overcome dispersion problem; Pre, Post and Symmetrical dispersion compensation scheme are modeled, analyzed and compared for investigate the performance of DWDM system. The proposed model is designed for 8Gbps using non-return-to-zero (NRZ), return-to-zero (RZ) and Gaussian modulation format with erbium doped fiber amplifier (EDFA) over a length of 150km single mode fiber (SMF) and 30km dispersion compensation fiber (DCF). The performance of designed model is compared in terms of bit error rate (BER) & Q-Factor and it is observed that, the symmetrical dispersion compensation scheme with RZ pulse generator modulation gives best performance for long-haul transmission system.