vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffb0c416000000002f030001000a00
Dynamic systems condition estimation regularization algorithms in the conditions of signals and hindrances statistical characteristics aprioristic uncertainty are offered. Regular iterative algorithms of strengthening matrix factor elements of the Kalman filter, allowing to adapt the filter to changing hindrance-alarm conditions are developed. Steady adaptive estimation algorithms of a condition vector in the aprioristic uncertainty conditions of covariance matrixes of object noise and the measurements hindrances providing a certain roughness of filtration process in relation to changing statistical characteristics of signals information parameters are offered. Offered practical realization results of the dynamic systems condition estimation algorithms are given at the adaptive management systems synthesis problems solution by technological processes of granulation drying of an ammophos pulp and receiving ammonia.