DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION
Abstract
vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff9c4716000000d059010001000400
This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT) obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

Authors
P.B. Chopade1, P.M. Patil2
Modern Education Society’s College of Engineering, India1, RMD Sinhgad School of Engineering, India2

Keywords
Super-Resolution, Sub-Pixel Image Registration, Integer Wavelet, Discrete Wavelet Transform, Half-Band Polynomial
Yearly Full Views
JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember
000000000000
Published By :
ICTACT
Published In :
ICTACT Journal on Image and Video Processing
( Volume: 4 , Issue: 4 , Pages: 817-823 )
Date of Publication :
May 2014
Page Views :
207
Full Text Views :

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.